Advanced Building Science

- Thermal Insulation
 - Key terms
 - Insulation basics
 - Temperature profiles
 - Optimizing insulation
- Readings
 - HF: Chapter 25 => 25.1 to 25.7
 - HF: Chapter 26 => 26.1 to 26.13
 - HPE: 3.3 to 3.3.4 & Appendix A.

BBE 4414/5414: Advanced Building Science Fundamentals

Thermal Insulation – Basics

- Steady-State Thermal Resistance
 - Calculated
 - properties under ideal conditions
 - Measured
 - guarded hot plate or hot box or in-situ
- Reality
 - installation issues (gaps/cracks/voids)
 - shrinkage/settling/compression
 - moisture content
 - airflow

- Thermal transmission, heat transfer, rate of heat flow
 - Flow of heat induced by a temperature difference may be a combination of conduction, convection, and radiation
- Thermal conductivity (k)

 time rate of heat flow per unit area for a specified thickness (1") per unit temperature gradient

3

- Thermal conductance (C)
 - time rate of heat flow per unit area for a specified material per unit temperature difference
- Thermal transmittance (U-factor)
 - time rate of heat flow per unit area per unit temperature difference

• Surface film coefficient (h)

 heat transfer between a surface and a fluid per unit time and temperature difference

Thermal resistivity (R_u)
 – reciprocal of thermal conductivity

- Thermal resistance (R-value)
 reciprocal of thermal conductance
- Surface film resistance
 reciprocal of the surface film coefficient

Thermal Insulation – Functions

Retarding heat flow to ...

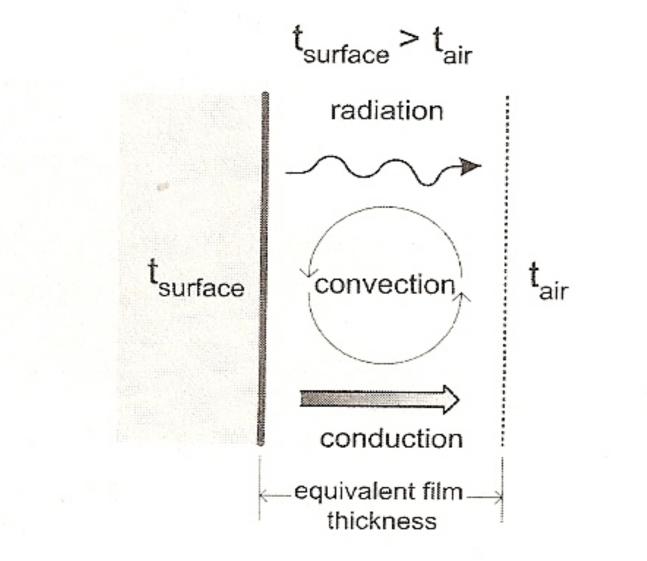
- conserve energy
- control surface temperatures
- control the temperature of a process
- prevent vapor condensation on surfaces
- reduce temperature fluctuations and variations

Thermal Insulation - Functions

And may ...

- add structural strength
- impede air flow and/or water vapor transmission
- provide support for a surface finish
- reduce noise and vibration

Thermal Insulation – Materials


• Inorganic

- fibrous or cellular materials such as glass, rock, or slag

- Organic
 - fibrous materials such as cellulose, cotton, wool,
 - cellular materials such as cork, rubber, polymers
- Metallic/metallized reflective membranes
 - these surfaces must face an air, gas or evacuated space

Thermal Insulation – Forms

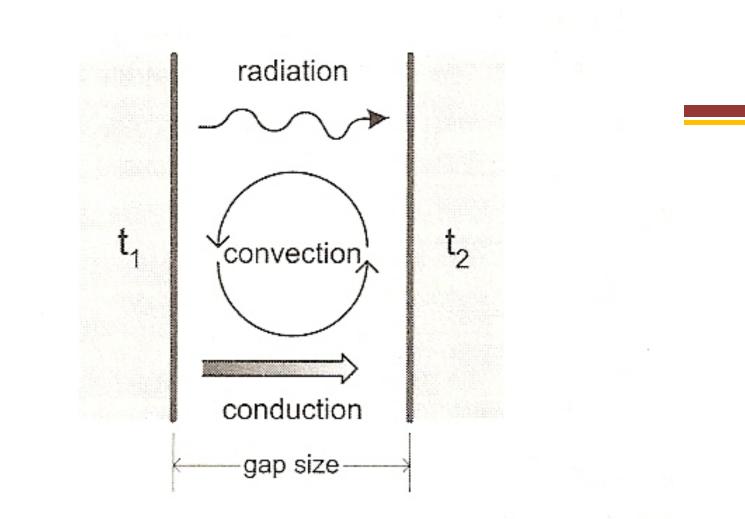
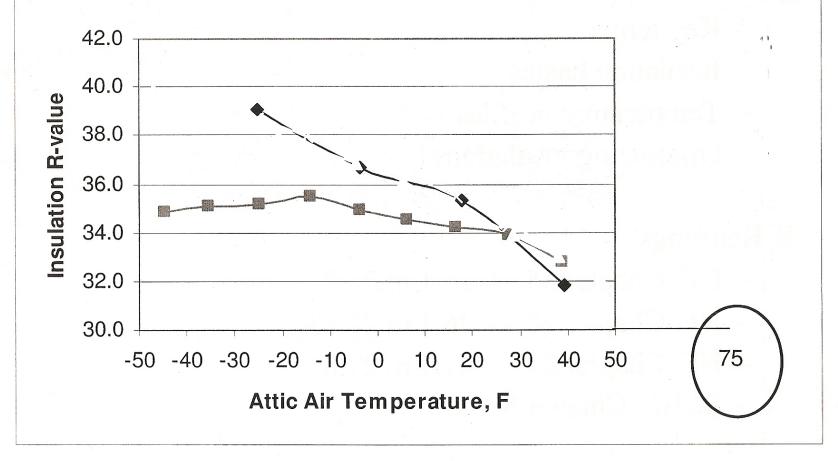

- Loose-fills
 - poured or blown in
- Flexible and semi-rigid
 - blankets, batts, felts
- Rigid
 - blocks, boards, sheets and panels
- Reflective
 - single and multi-layer
- Formed-in-place
 - poured, frothed or sprayed

Figure 5.9: Surface film analogy of heat transfer at surfaces

Source: Straube & Burnett, Building Science for Enclosures, Chapter 5

BBE 4414/5414: Advanced Building Science Fundamentals

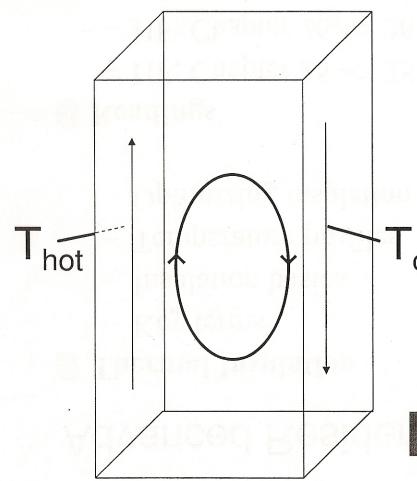
Figure 5.10: Heat transfer across plane airspaces


Source: Straube & Burnett, Building Science for Enclosures, Chapter 5

12

BBE 4414/5414: Advanced Building Science Fundamentals

Measured R-value


R-30 Batt Simulated Winter Performance

Source: Marcus Bianchi, Johns Manville, Fibrous Insulation: How Does it Work?

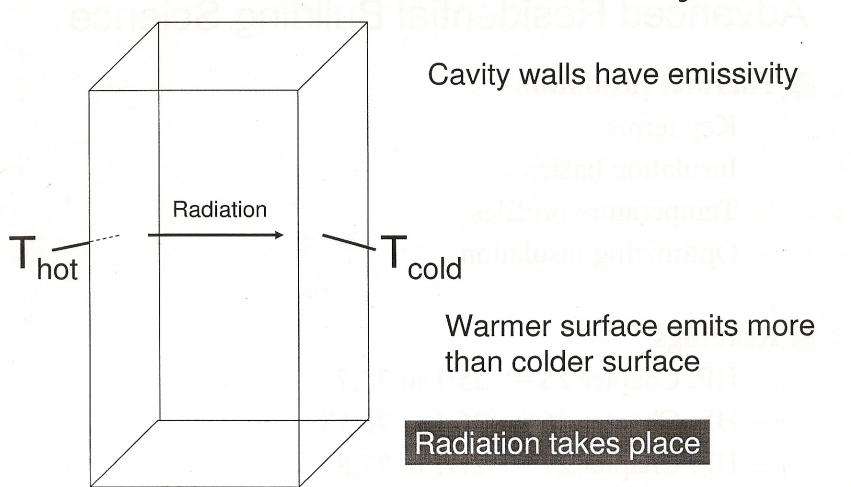
BBE 4414/5414: Advanced Building Science Fundamentals

An Uninsulated Cavity

Warmer air gets less dense

Colder air gets denser

cold

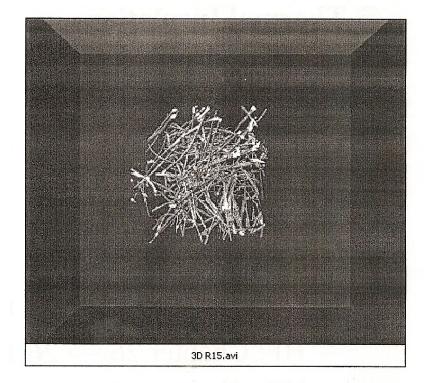

Colder air sinks and warmer air floats - Recirculation

Natural convection takes place

Source: Marcus Bianchi, Johns Manville, Fibrous Insulation: How Does it Work?

BBE 4414/5414: Advanced Building Science Fundamentals

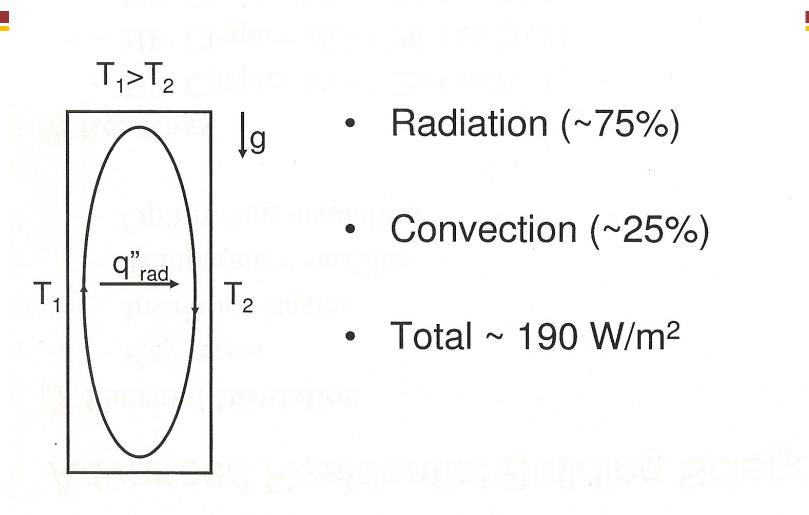
An Uninsulated Cavity



Source: Marcus Bianchi, Johns Manville, Fibrous Insulation: How Does it Work?

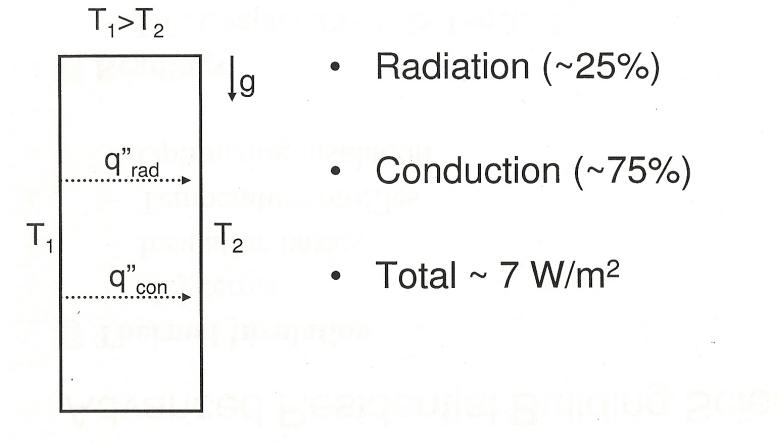
BBE 4414/5414: Advanced Building Science Fundamentals

Add Fibrous Insulation


- Why add fibers?
 - Reduce the air permeability of the cavity; air finds obstacles to move.
 - Absorb and scatter thermal radiation; increase extinction coefficient.

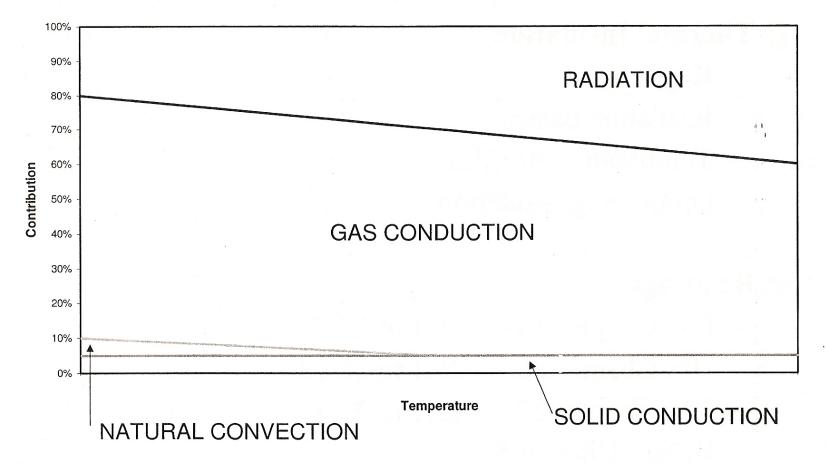
Source: Marcus Bianchi, Johns Manville, Fibrous Insulation: How Does it Work?

BBE 4414/5414: Advanced Building Science Fundamentals


The Uninsulated Wall Cavity

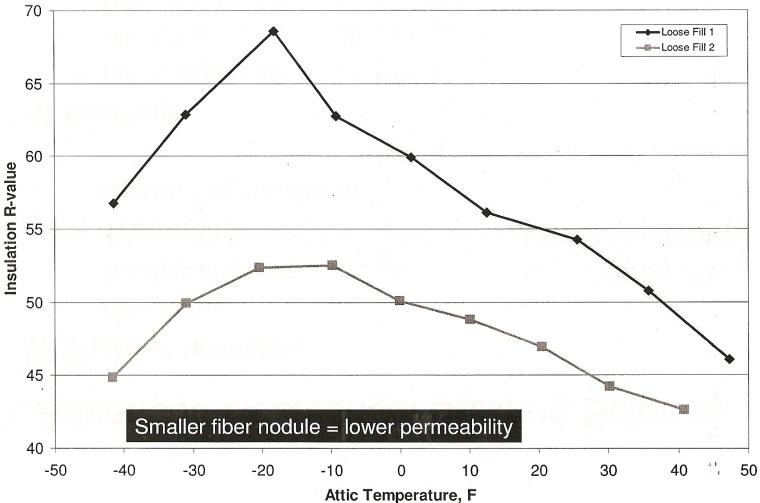
Source: Marcus Bianchi, Johns Manville, Fibrous Insulation: How Does it Work?

BBE 4414/5414: Advanced Building Science Fundamentals


The Wall Cavity with Insulation

Source: Marcus Bianchi, Johns Manville, Fibrous Insulation: How Does it Work?

BBE 4414/5414: Advanced Building Science Fundamentals


Various Modes

Source: Marcus Bianchi, Johns Manville, Fibrous Insulation: How Does it Work?

BBE 4414/5414: Advanced Building Science Fundamentals

Loose Fill Attic Insulation

Source: Marcus Bianchi, Johns Manville, Fibrous Insulation: How Does it Work?

BBE 4414/5414: Advanced Building Science Fundamentals

University of Minnesota – Bioproducts & Biosystems Engineering © 2016 Regents of the University of Minnesota. All Rights Reserved

20

Thermal Insulation – Performance

Factors Affecting Heat Flow

- Mean temperature, moisture content, air infiltration, orientation, and direction of heat flow.
- Thermal conductivity varies with density

			Surface Emittance, ϵ							
		Nonre	flective	Reflective						
Position of	Direction of		0.90	= 3	0.20	ε = 0.05				
Surface	Heat Flow	h _i	R	h _i	R	h _i	R			
Still Air										
Horizontal	Upward	1.63	0.61	0.91	1.10	0.76	1.32			
Sloping at 45°	Upward	1.60	0.62	0.88	1.14	0.73	1.37			
Vertical	Horizontal	1.46	0.68	0.74	1.35	0.59	1.70			
Sloping at 45°	Downward	1.32	0.76	0.60	1.67	0.45	2.22			
Horizontal	Downward	1.08	0.92	0.37	2.70	0.22	4.55			
Moving Air (any	position)	h _o	R							
15 mph wind (for winter)	Any	6.00	0.17	. <u></u>						
7.5 mph wind (for summer)	Any	4.00	0.25		E Fundame					

Table 1 Surface Conductances and Resistances for Air

BBE 4414/5414: Advanced Building Science Fundamentals

Heat, Air, and Moisture Control in Building Assemblies-Material Properties

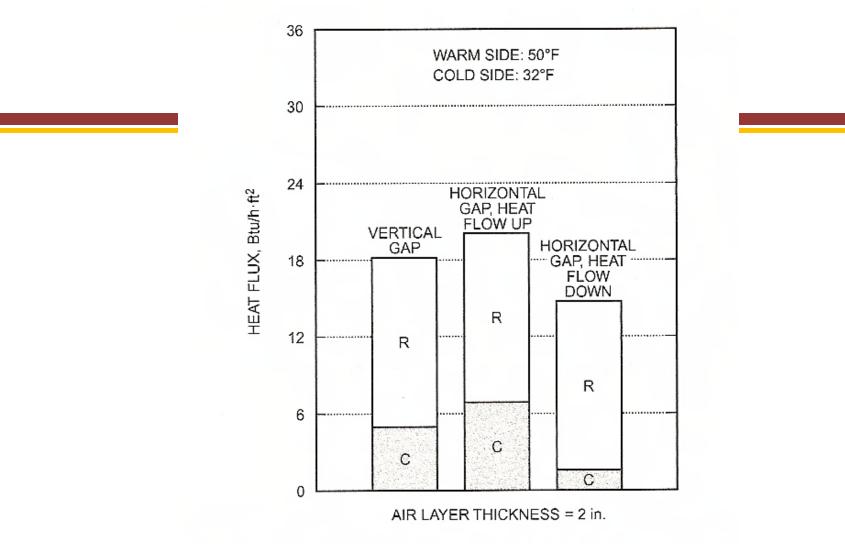
-		Air Space		Effective Emittance $\varepsilon_{eff}^{d,e}$									
Position Direction of of Air Space Heat Flow	Mean	Temp.	0.5 in. Air Space ^c				0.75 in. Air Space ^c						
		Temp., ^d °F	Diff., ^d °F	0.03	0.05	0.2	0.5	0.82	0.03	0.05	0.2	0.5	0.82
		90	10	2.13	2.03	1.51	0.99	0.73	2.34	2.22	1.61	1.04	0.75
		50	30	1.62	1.57	1.29	0.96	0.75	1.71	1.66	1.35	0.99	0.77
	A	50	10	2.13	2.05	1.60	1.11	0.84	2.30	2.21	1.70	1.16	0.87
loriz.	Up	0	20	1.73	1.70	1.45	1.12	0.91	1.83	1.79	1.52	1.16	0.93
	<u>^</u>	0	10	2.10	2.04	1.70	1.27	1.00	2.23	2.16	1.78	1.31	1.02
		-50	20	1.69	1.66	1.49	1.23	1.04	1.77	1.74	1.55	1.27	1.07
		-50	10	2.04	2.00	1.75	1.40	1.16	2.16	2.11	1.84	1.46	1.20
		90	10	2.44	2.31	1.65	1.06	0.76	2.96	2.78	1.88	1.15	0.81
		50	30	2.06	1.98	1.56	1.10	0.83	1.99	1.92	1.52	1.08	0.82
	4	50	10	2.55	2.44	1.83	1.22	0.90	2.90	2.75	2.00	1.29	0.94
l5°	Un	0	20	2.20	2.14	1.76	1.30	1.02	2.13	2.07	1.72	1.28	1.00
Slope	Up	0	10	2.63	2.54	2.03	1.44	1.10	2.72	2.62	2.08	1.47	1.12
		-50	20	2.08	2.04	1.78	1.42	1.17	2.05	2.01	1.76	1.41	1.16
		-50	10	2.62	2.56	2.17	1.66	1.33	2.53	2.47	2.10	1.62	1.30
		90	10	2.47	2.30	1.67	1.06	0.77	3.50	3.24	2.08	1.22	0.84
		50	30	2.57	2.46	1.84	1.23	0.90	2.91	2.77	2.00	1.30	0.94
		50	10	2.66	2.54	1.84	1.23	0.90	3.70	3.46	2.35	1.43	1.01
Instinal	** •		20	2.80	2.72	2.14	1.24	1.13	3.14	3.02	2.33	1.58	1.18
Vertical	Horiz. — 🗩	0			2.72				3.77	3.59	2.64	1.73	1.16
		0	10	2.93		2.20	1.53 1.76	1.15 1.39	2.90	2.83	2.04	1.75	1.20
		-50	20	2.90	2.82	2.35			3.72	3.60	2.30	2.04	1.59
		-50	10	3.20	3.10	2.54	1.87	1.46					
		90	10	2.48	2.34	1.67	1.06	0.77	3.53	3.27	2.10	1.22	0.84
	1	50	30	2.64	2.52	1.87	1.24	0.91	3.43	3.23	2.24	1.39	0.99
5°	~ \	50	10	2.67	2.55	1.89	1.25	0.92	3.81	3.57	2.40	1.45	1.02
Slope	Down 🔪	0	20	2.91	2.80	2.19	1.52	1.15	3.75	3.57	2.63	1.72	1.26
nope		0	10	2.94	2.83	2.21	1.53	1.15	4.12	3.91	2.81	1.80	1.30
		-50	20	3.16	3.07	2.52	1.86	1.45	3.78	3.65	2.90	2.05	1.57
		-50	10	3.26	3.16	2.58	1.89	1.47	4.35	4.18	3.22	2.21	1.66
		90	10	2.48	2.34	1.67	1.06	0.77	3.55	3.29	2.10	1.22	0.85
	- I.	50	30	2.66	2.54	1.88	1.24	0.91	3.77	3.52	2.38	1.44	1.02
2 3 N		50	10	2.67	2.55	1.89	1.25	0.92	3.84	3.59	2.41	1.45	1.02
Horiz. Dow	Down	0	20	2.94	2.83	2.20	1.53	1.15	4.18	3.96	2.83	1.81	1.30
		0	10	2.96	2.85	2.22	1.53	1.16	4.25	4.02	2.87	1.82	1.31
	V	-50	20	3.25	3.15	2.58	1.89	1.47	4.60	4.41	3.36	2.28	1.69
		-50	10	3.28	3.18	2.60	1.90	1.47	4.71	4.51	3.42	2.30	1.71

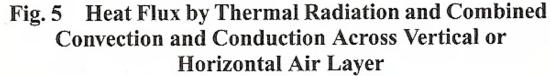
Table 3 Thermal Resistances of Plane Air Spaces,^{a,b,c} h·ft²·°F/Btu

Source: ASHRAE Handbook Fundamentals 2009, Chapter 26

BBE 4414/5414: Advanced Building Science Fundamentals

University of Minnesota – Bioproducts & Biosystems Engineering


© 2016 Regents of the University of Minnesota. All Rights Reserved


23

		Air S	Space		1.5 i	n. Air Sp	acec			3.5 i	n. Air Sp	acec	
		90	10	2.55	2.41	1.71	1.08	0.77	2.84	2.66	1.83	1.13	0.80
	Α.	50	30	1.87	1.81	1.45	1.04	0.80	2.09	2.01	1.58	1.10	0.84
	A	50	10	2.50	2.40	1.81	1.21	0.89	2.80	2.66	1.95	1.28	0.93
Horiz.	Up	0	20	2.01	1.95	1.63	1.23	0.97	2.25	2.18	1.79	1.32	1.03
	1	Õ	10	2.43	2.35	1.90	1.38	1.06	2.71	2.62	2.07	1.47	1.12
		-50	20	1.94	1.91	1.68	1.36	1.13	2.19	2.14	1.86	1.47	1.20
		-50	10	2.37	2.31	1.99	1.55	1.26	2.65	2.58	2.18	1.67	1.33
		90	10	2.92	2.73	1.86	1.14	0.80	3.18	2.96	1.97	1.18	0.82
		50	30	2.14	2.06	1.61	1.12	0.84	2.26	2.17	1.67	1.15	0.86
	1	50 50	10	2.88	2.74	1.99	1.29	0.94	3.12	2.95	2.10	1.34	0.96
45°	Up	0	20	2.30	2.23	1.82	1.34	1.04	2.42	2.35	1.90	1.38	1.06
Slope	op	Ő	10	2.79	2.69	2.12	1.49	1.13	2.98	2.87	2.23	1.54	1.16
		-50	20	2.22	2.17	1.88	1.49	1.21	2.34	2.29	1.97	1.54	1.25
	/	-50	10	2.71	2.64	2.23	1.69	1.35	2.87	2.79	2.33	1.75	1.39
		90	10	3.99	3.66	2.25	1.27	0.87	3.69	3.40	2.15	1.24	0.85
		50	30	2.58	2.46	1.84	1.23	0.90	2.67	2.55	1.89	1.25	0.91
		50	10	3.79	3.55	2.39	1.45	1.02	3.63	3.40	2.32	1.42	1.01
Vertical	Horiz.	0	20	2.76	2.66	2.10	1.48	1.12	2.88	2.78	2.17	1.51	1.14
ventical		► Ŭ	10	3.51	3.35	2.51	1.67	1.23	3.49	3.33	2.50	1.67	1.23
		-50	20	2.64	2.58	2.18	1.66	1.33	2.82	2.75	2.30	1.73	1.37
		-50	10	3.31	3.21	2.62	1.91	1.48	3.40	3.30	2.67	1.94	1.50
		90	10	5.07	4.55	2.56	1.36	0.91	4.81	4.33	2.49	1.34	0.90
		50	30	3.58	3.36	2.31	1.42	1.00	3.51	3.30	2.28	1.40	1.00
		50	10	5.10	4.66	2.85	1.60	1.09	4.74	4.36	2.73	1.57	1.08
45°	Down	0	20	3.85	3.66	2.68	1.74	1.27	3.81	3.63	2.66	1.74	1.27
Slope	Down	. Ŏ	10	4.92	4.62	3.16	1.94	1.37	4.59	4.32	3.02	1.88	1.34
	1	-50	20	3.62	3.50	2.80	2.01	1.54	3.77	3.64	2.90	2.05	1.57
		-50	10	4.67	4.47	3.40	2.29	1.70	4.50	4.32	3.31	2.25	1.68
		90	10	6.09	5.35	2.79	1.43	0.94	10.07	8.19	3.41	1.57	1.00
		50	30	6.27	5.63	3.18	1.70	1.14	9.60	8.17	3.86	1.88	1.22
		50	10	6.61	5.90	3.27	1.73	1.15	11.15	9.27	4.09	1.93	1.24
Horiz.	Down	0	20	7.03	6.43	3.91	2.19	1.49	10.90	9.52	4.87	2.47	1.62
noniz.	Sound	ŏ	10	7.31	6.66	4.00	2.22	1.51	11.97	10.32	5.08	2.52	1.64
		-50	20	7.73	7.20	4.77	2.85	1.99	11.64	10.49	6.02	3.25	2.18
		-50	10	8.09	7.52	4.91	2.89	2.01	12.98	11.56	6.36	3.34	2.22

Source: ASHRAE Handbook Fundamentals 2009, Chapter 26

BBE 4414/5414: Advanced Building Science Fundamentals

Source: ASHRAE Handbook Fundamentals 2013, Chapter 25.7

25

BBE 4414/5414: Advanced Building Science Fundamentals

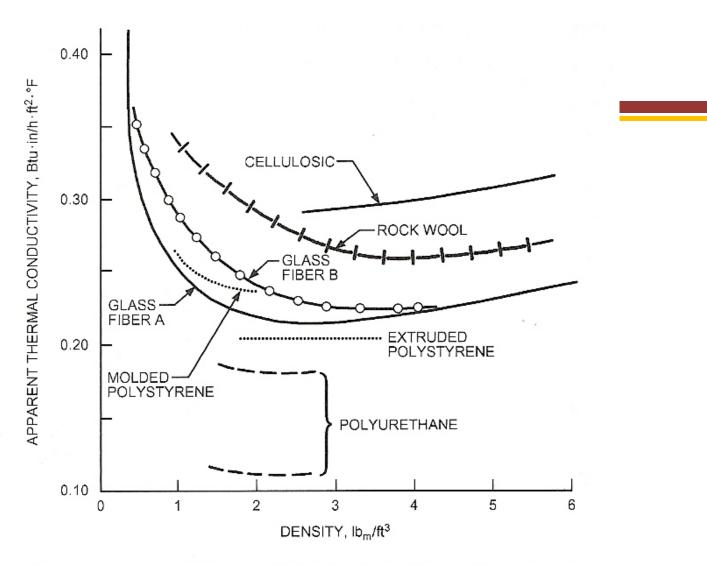
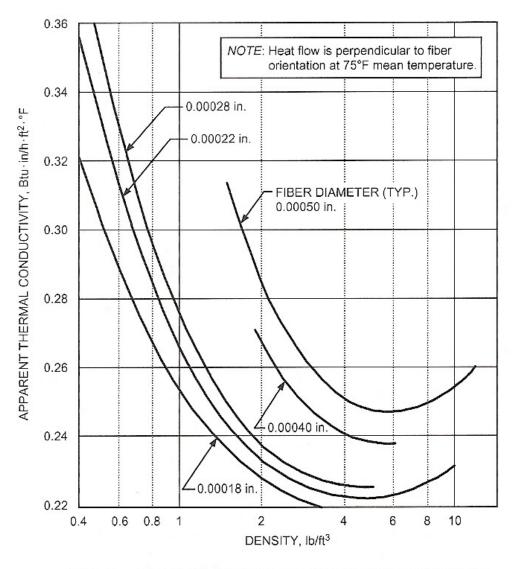



Fig. 2 Apparent Thermal Conductivity Versus Density of Several Thermal Insulations Used as Building Insulations

Source: ASHRAE Handbook Fundamentals 2009, Chapter 26

26

BBE 4414/5414: Advanced Building Science Fundamentals

Fig. 3 Variation of Apparent Thermal Conductivity with Fiber Diameter and Density

Source: ASHRAE Handbook Fundamentals 2009, Chapter 26

BBE 4414/5414: Advanced Building Science Fundamentals

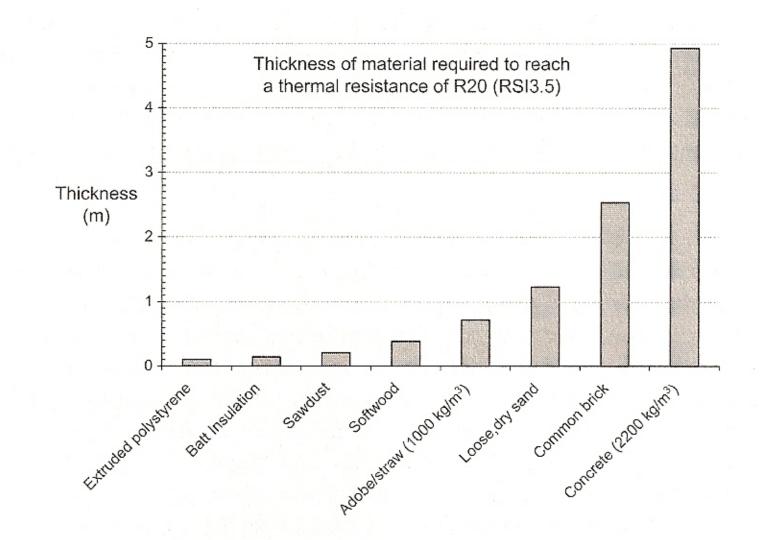
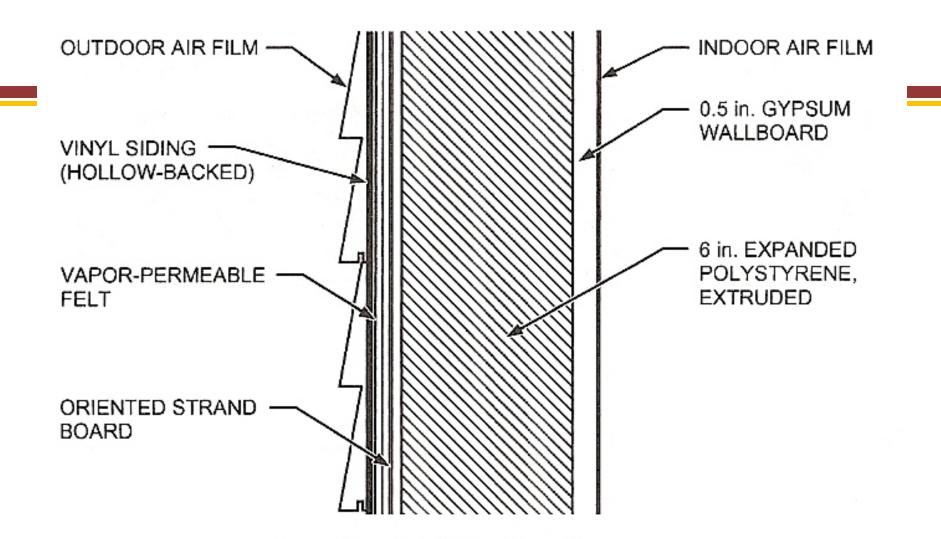



Figure 5.7: Comparison of the thickness of various materials required to achieve RSI3.5

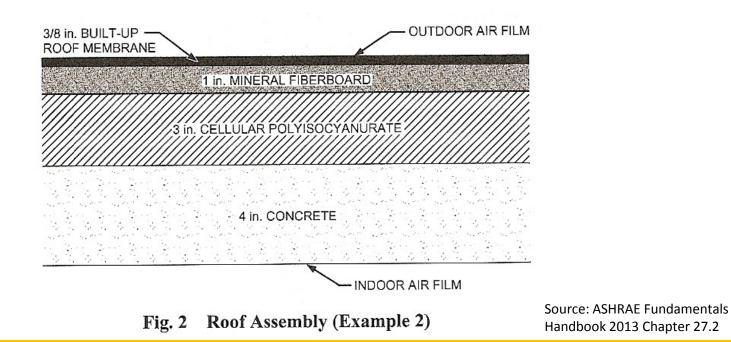
Source: Straube and Burnett, Building Science for Building Enclosures, Chapter 5

BBE 4414/5414: Advanced Building Science Fundamentals

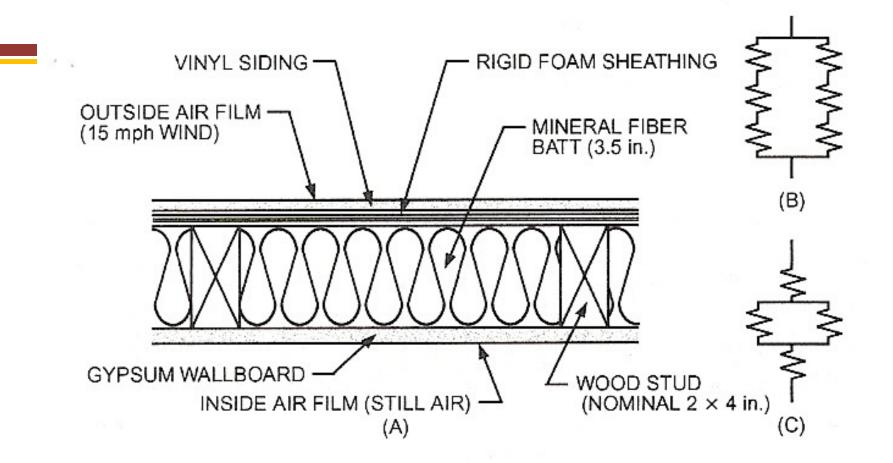
Fig. 1 Structural Insulated Panel Assembly (Example 1)

Source: ASHRAE Fundamentals Handbook 2013 Chapter 27.2

BBE 4414/5414: Advanced Building Science Fundamentals


Element	R, h·ft ² ·°F/Btu
1. Outdoor air film	0.17
2. Vinyl siding (hollow backed)	0.62
3. Vapor-permeable felt	0.06
4. Oriented strand board (OSB), 7/16 in.	0.62
5. 6 in. expanded polystyrene, extruded (smooth skin)	30.0
6. 0.5 in. gypsum wallboard	0.45
7. Indoor air film	0.68
Total	32.6

Source: ASHRAE Fundamentals Handbook 2013 Chapter 27.2


BBE 4414/5414: Advanced Building Science Fundamentals

Element	R, h·ft ² ·°F/Btu
1. Indoor air film	0.92
2.4 in. concrete, 120 lb/ft ³ and $k = 8$	0.5
3. 3 in. cellular polyisocyanurate (CFC-11 exp.) (gas-impermeable facers)	28.2
4. 1 in. mineral fiberboard	2.94
5. 3/8 in. built-up roof membrane	0.33
6. Outdoor air film	0.25
Total	33.1

Using $U = 1/R_{T(av)}$, the U-factor is 0.030 Btu/h·ft².°F.

BBE 4414/5414: Advanced Building Science Fundamentals

Fig. 3 (A) Wall Assembly for Example 3, with Equivalent Electrical Circuits: (B) Parallel Path and (C) Isothermal Planes

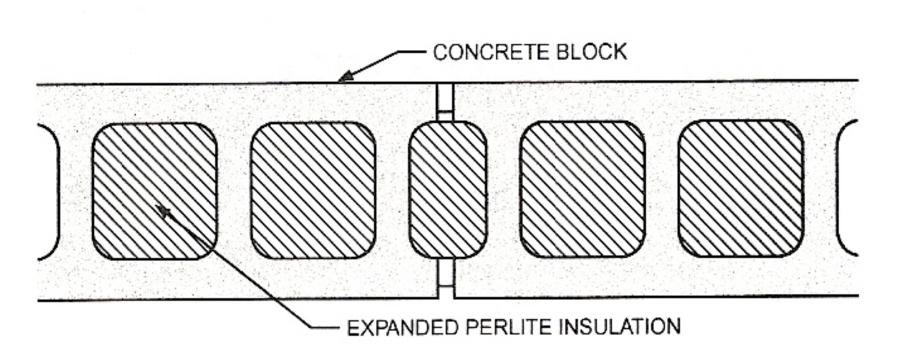
Source: ASHRAE Fundamentals Handbook 2013, Chapter 27.3

BBE 4414/5414: Advanced Building Science Fundamentals

Element	R (Insulated Cavity), h∙ft ² .°F/Btu	R (Studs, Plates, and Headers), h∙ft ² .°F/Btu
1. Outside air film, 15 mph wind	0.17	0.17
2. Vinyl siding (hollow-backed)	0.62	0.62
3. Rigid foam insulating sheathing	4.0	4.0
4. Mineral fiber batt insulation, 3.5 in.	11.7	
5. Wood stud, nominal 2×4	_	4.38
6. Gypsum wallboard, 0.5 in.	0.45	0.45
7. Inside air film, still air	0.68	0.68
	$R_1 = 17.79$	$R_2 = 10.3$

Source: ASHRAE Fundamentals Handbook 2013, Chapter 27.3

BBE 4414/5414: Advanced Building Science Fundamentals


Element	<i>R</i> (Stud Cavity Elements), h•ft ² •°F/Btu	R (Studs, Plates, and Headers), h∙ft ² .°F/Btu
1. Outside air film, 15 mph wind		0.17
2. Vinyl siding (hollow-backed)		0.62
3. Rigid foam insulating sheathing		4.0
4. Mineral fiber batt insulation, 3.5 in.	11.7	8.71 (R_{avs})
5. Wood stud, nominal 2×4	4.38	15
6. Gypsum wallboard, 0.5 in.		0.45
7. Inside air film, still air		0.68
	12 - 21	$R_T = 14.63$

Source: ASHRAE Fundamentals Handbook 2013 Chapter 27.4

34

BBE 4414/5414: Advanced Building Science Fundamentals

When Thermal Bridges Matter

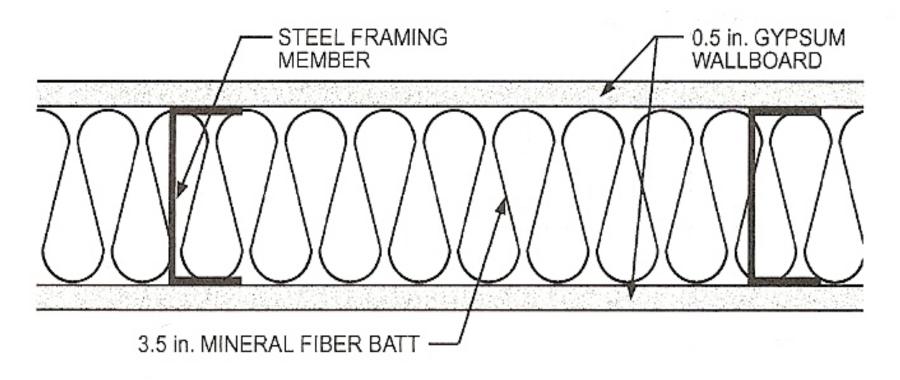


Fig. 4 Insulated Concrete Block Wall (Example 4)

Source: ASHRAE Fundamentals Handbook 2013, Chapter 27.4

BBE 4414/5414: Advanced Building Science Fundamentals

When Thermal Bridges Matter

Fig. 5 Insulated Steel Frame Wall (Example 5)

Source: ASHRAE Fundamentals Handbook 2009, Chapter 27.5

BBE 4414/5414: Advanced Building Science Fundamentals

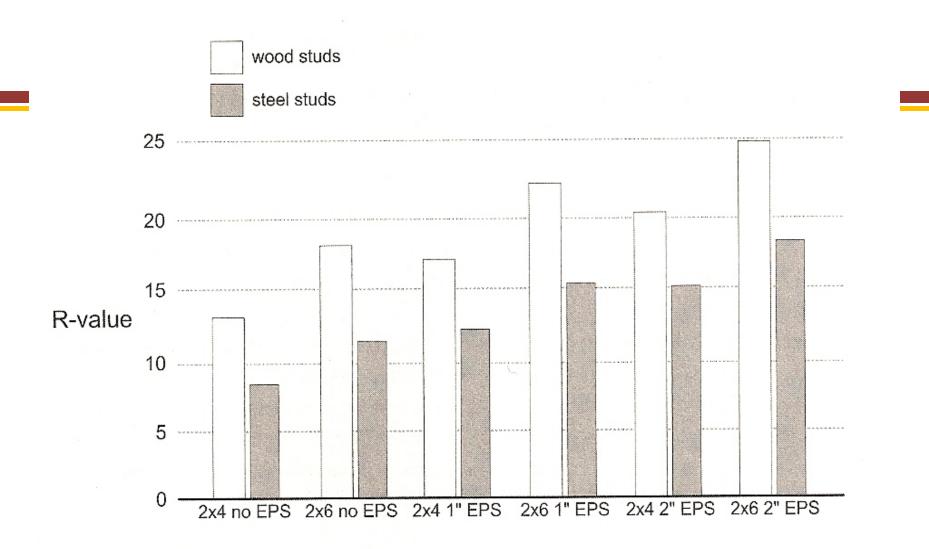


Figure 5.12: Two-dimensional heat flow calculations for wood and steel framing

Source: Straube and Burnett, Building Science for Building Enclosures, Chapter 5

BBE 4414/5414: Advanced Building Science Fundamentals

Temperature Profiles

Calculating interface temperatures

 Temperature drop across any element is proportional to the R-value of the element compared to the total R-value

$$T_{surface} = T_{in} - \frac{R_{(interior)}}{-----x} (T_{in} - T_{out})$$

$$R_{(total)}$$

BBE 4414/5414: Advanced Building Science Fundamentals

How Much Insulation?

Optimizing Insulation Levels

- Insulation costs versus lost energy costs
 - cost of insulation isn't smooth due to changes in structural requirements and mechanical systems
- Must use same time frame
 - bring back to net present value or annualized capital costs
- Other factors
 - comfort issues
 - energy supply

39

Thermal Insulation – Final Thoughts

- Type of Building
 - Skin dominated versus internal load dominated

• New versus adding

Concept of insulation packages or ratios

 Why do we put more insulation in a ceiling than a wall?

In Summary

Questions and Discussion

BBE 4414/5414: Advanced Building Science Fundamentals

Next Class

- Pyschrometrics
 - Key aspects of the psychrometric chart
 - Using the chart to plot basic processes
 - Using the chart to solve specific problems

- Readings
 - HF: Chapter 1 (1-16)
 - HPE: 3.4

BBE 4414/5414: Advanced Building Science Fundamentals

42