Advanced Residential Building Science

- Introduction to HAM
 - Heat flows
 - Air flows
 - Moisture flows
- Readings
 - HF: Chapter 2 => 2.1 to 2.3 (review)
 - HF: Chapter 4 => 4.1 to 4.21 (review)
 - HPE: Chapter 1, 2, 3 (intro only)

Introduction to HAM

- Heat Flows
 - Transmission losses/gains
 - Air exchange losses/gains
 - Solar gains
 - Internal gains

- Moisture Flows
 - Liquid
 - gravity
 - capillarity
 - Vapor
 - diffusion
 - air transport

- Air Flows
 - Paths
 - Pressures

Airflow - The Basics

Air Flows in Buildings

- Simple in concept, but very challenging in practice!
- For air to move from one location to another there must be a pathway (or hole) and a pressure
- In fixed volume buildings, air in must equal air out

BBE 4414/5414: Advanced Building Science Fundamentals

Airflow - The Basics

Pathways are

- Unintentional
 - leaks and holes
- Intentional
 - windows & doors
 - ports & ducts

BBE 4414/5414: Advanced Building Science Fundamentals

Airflow - The Basics

Pressures

- Natural
 - wind
 - stack
- Mechanical
 - combustion venting
 - exhaust fans/devices
 - supply fans/devices
 - forced air systems
 - leaks
 - imbalances

Heat - Fundamentals

 Heat *always* goes from hot (more energy) to cold (less energy)

- Modes of Heat Transfer
 - Conduction
 - Convection
 - Radiation

Heat - The Basics

Heat moves through the building envelope in two distinct ways:

- Transmission losses/gains
 - through the opaque ceilings, walls, floors
 - through windows and doors
- Air exchange losses/gains
 - infiltration & exfiltration
 - exhaust devices
 - combustion equipment
 - ventilation

Heat - The Basics

Envelope Losses/Gains (Loads)

- Transmission
- Air exchange
- Solar gains
- Internal gains

Heat - The Basics

Loads vs. Purchased Energy

- Building load comparisons
 - heating
 - cooling
- The changing role of
 - solar gains
 - internal gains

Basics of Heat Loss/Gain

- U-Value
 - The U-value of a material refers to how well the material will conduct heat (energy)
 - It is the transfer of heat, expressed in
 - Btu/hr-sq.ft.-°F
- R-value
 - The R-value of a material refers to resistance to the flow of heat (energy) for that material
 - It is resistance to heat flow, expressed in
 - hr-sq.ft.-°F/Btu

R-values and U-values are reciprocal. The relationship between U-values and R-values can be shown mathematically like this:

U-value = 1/R-value

and

BBE 4414/5414: Advanced Building Science Fundamentals

Using the appropriate formulas, we can calculate the heat (energy) losses from a building

- There is a calculation to find heat loss through the building envelope
 - we call these **transmission losses**
- There is a separate calculation to find heat loss from air movement in and out of the building
 - we call these **air exchange losses**

Basics of Heat Loss/Gain

Heat Loss Calculation: Transmission

Rate of Heat Loss = U-value x A x ΔT

Where the rate of heat loss is defined as U and A = area (square feet) ΔT = temperature difference U-value = conductance (Btu/hr-sq.ft.-°F)

Note: The rate of heat loss will be in Btu/hr

Basics of Heat Loss/Gain

Heat Loss Calculation: Air Infiltration

Rate of Heat Loss = 0.018 x cfm x 60 x Δ T or = 0.018 x ACH x volume x Δ T

where:

∆T = temperature difference
cfm = cubic feet per minute
ACH = air changes per hour
0.018 = the amount of heat (in Btus)
it takes to heat 1 cu.ft. of air 1 °F

Note. The rate of heat loss is in Btu/hr

Moisture - Overview

- States of moisture
 - Solid
 - Liquid
 - Gas
 - Adsorbed
- Moisture transfer
 - Liquid
 - Vapor
- Wetting vs. Drying

Moisture - The Basics

Moisture States:

Solid

Liquid (Absorbed)

Vapor (Adsorbed)

BBE 4414/5414: Advanced Building Science Fundamentals

Moisture States - Solid

Ice is generally not an issue in residential construction, except for

- wind-driven snow in attics
- attic frost
- water entry resulting from ice dams
- freeze-thaw action in absorbent materials

17

Moisture States - Liquid

Liquid water sources and transport are usually the most damaging in residential construction, both above and below grade, and can cause

- initiation of biological deterioration
- initiation of mold/mildew growth
- staining, leaching, efflorescence
- dimensional changes in materials
- enhanced freeze-thaw damage

Moisture States - Vapor

- Water vapor will rarely create a problem as long as it stays in the vapor state
- However...
 - it frequently contributes to durability and indoor air quality problems when it migrates and condenses on susceptible materials
 - it can raise the moisture content of materials by adsorption and cause dimensional changes
 - at very high relative humidity it can sustain mold growth

19

Moisture States - Vapor

But, remember....

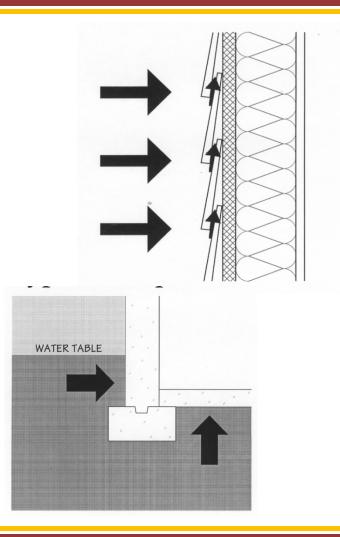
Vapor drying is the main method of removing moisture from materials

BBE 4414/5414: Advanced Building Science Fundamentals

Moisture Transport - Liquid

Gravity (Bulk Water)

- Above Grade
 - roof leaks
 - window/door leaks
 - wall penetrations
 - saturated materials
- Below Grade
 - surface drainage
 - saturated soils

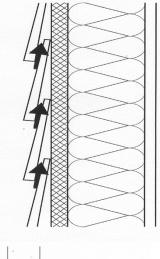

BBE 4414/5414: Advanced Building Science Fundamentals

Moisture Transport - Liquid

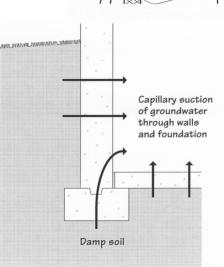
Pressure Driven Flow

- Above grade
 - wind-driven rain

- Below grade
 - rising water table


Courtesy of Building Science Corporation

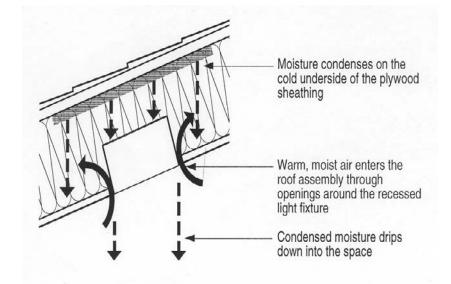
BBE 4414/5414: Advanced Building Science Fundamentals


Moisture Transport - Liquid

Capillary Action

- Above grade
 - seams/joints
 - flashing

- Below grade
 - soils
 - footing/foundation
 - slab

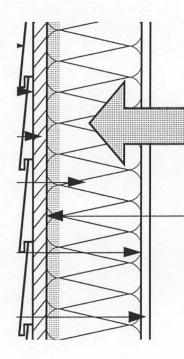

Courtesy of Building Science Corporation

BBE 4414/5414: Advanced Building Science Fundamentals

Moisture Transport - Vapor

Air Flow

- Above grade
 - interior/exterior moisture
 - air barrier integrity
 - indoor-outdoor pressures
- Below Grade
 - interior & soil moisture
 - air barrier integrity
 - basement-outdoor pressures

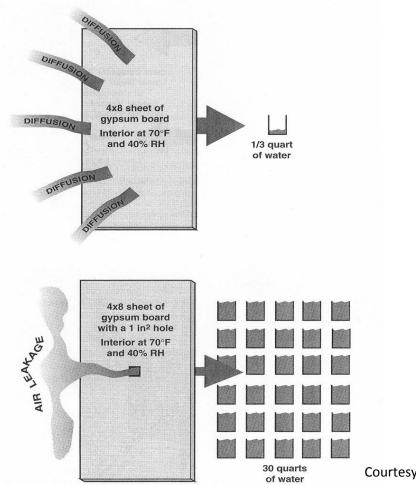


Courtesy of Building Science Corporation

Moisture Transport - Vapor

Diffusion

- Above grade
 - vapor pressure gradient
 - outward in heating
 - inward in cooling
 - permeability
- Below grade
 - vapor pressure gradient
 - lower wall and slab is usually inward
 - upper wall is similar to above grade
 - permeability


Warm, moist air moves from the interior toward the exterior in a heating climate

The interior face of the sheathing is usually the first condensing surface

Courtesy of Building Science Corporation

BBE 4414/5414: Advanced Building Science Fundamentals

Moisture Transport - Vapor

Courtesy of Building Science Corporation

BBE 4414/5414: Advanced Building Science Fundamentals

Moisture Control - General

Over some critical period

- drying must exceed wetting
- material storage provides the buffer

Moisture - Storage

Storage as a Buffer

- Because a perfect envelope is not realistic, wetting will occur
- Ample storage must be provided until drying can be completed
 - concrete/masonry walls provide a lot of storage
 original EIFS was over mass walls and it worked
 - steel frame and fiberglass provide almost no storage
 - wood framing and sheathing provide limited storage
 - some evidence that cellulose board or insulation can act as a hygric buffer for short wetting periods

Remember, water stored (adsorbed or absorbed) must leave as a vapor!

Indoor Air Quality - Fundamentals

- Indoor pollutant concentration is a function of ...
 - source strength (source type, emissions rate, transport)
 - removal rate (ventilation, filtration, diffusion, sinks)

 Indoor air quality has been demonstrated to be many times worse than outdoor air quality

BBE 4414/5414: Advanced Building Science Fundamentals

IAQ and Health

- Health impacts
 - Acute
 - Chronic
- Occupant sensitivities
 - Age
 - General health
 - Exposure
 - Dose
 - Duration

BBE 4414/5414: Advanced Building Science Fundamentals

30

- External
 - Outdoor air
 - Attached garages
 - Loading docks
 - Soil gas

- Internal
 - Building materials
 - Combustion equipment
 - Occupant
 - Occupant activities
 - Cooking
 - Cleaning
 - Hobbies
 - Furnishings
 - Mold and other biologicals

BBE 4414/5414: Advanced Building Science Fundamentals

Pollutant Avoidance Strategies

- Elimination
 - don't bring it in
 - remove it
- Encapsulation
 - seal it (another material or paint, varnish, sealer)

32

Pollution Removal Strategies

- Point source removal
 - dedicated ventilation (bath fan, kitchen hood, etc)
 - spot filtration (free standing unit)
- General pollutant removal
 - whole house ventilation
 - general filtration (via air handling system)

Building Science Review

- Key Building Science Principles
 - Heat goes from _____ to _____.
 - Water vapor goes from _____ to _____.
 - Water vapor goes from _____ to _____.
 - Air in _____ air out (and vice versa).
 - Air must have a _____ and a _____ to flow.
 - _____ the rain (and the soil)
 - Most of the action is at _____ and _____.
 - Gas concentration (pollutants, water vapor, etc.) is a function of

_ ____ and _____ .

Building Science Review

In the end..

_____, ____, and ______flows will drive the performance of the system!

BBE 4414/5414: Advanced Building Science Fundamentals

You are thinking about putting carpet on your basement slab...

- Good idea or bad idea?

– What might happen?

– Can it be done?

You are thinking it might be a good idea to replace your old furnace with a high-efficiency sealed combustion model....

- Good idea or bad idea?

– What might happen?

- Can it be done?

BBE 4414/5414: Advanced Building Science Fundamentals

You are remodeling your kitchen and thought it might be nice to add a downdraft range vent....

– Good idea or bad idea?

– What might happen?

– Can it be done?

BBE 4414/5414: Advanced Building Science Fundamentals

You are suspicious that you water heater is not venting properly so you decide to add a combustion air duct to the outdoors....

– Good idea or bad idea?

– What might happen?

– Can it be done?

Water is dripping off your windows in winter and you've been told you simply need to add mechanical ventilation....

- Good idea or bad idea?

– What might happen?

– Can it be done?

BBE 4414/5414: Advanced Building Science Fundamentals

You decided to remodel the basement and want to add interior insulation to the block walls....

– Good idea or bad idea?

– What might happen?

– Can it be done?

In Summary

Questions and Discussion

BBE 4414/5414: Advanced Building Science Fundamentals

Preview for Next Class

- Intro to Building Enclosures (Envelope)
 - Built facilities
 - Building enclosure functions
- Thermal Comfort
 - Interior design conditions

- Readings
 - HPE Chapter 2 & 3 (intro)
 - HF: Chapter 9.1 to 9.23

Building Science Principles

- Heat goes from warm to cold
- Water vapor goes from more to less
- Water vapor goes from warm to cold
- Air in must equal air out (and vice versa)
- Airflow requires pressure and a path
- Drain the rain (and the soil)
- Most of the action is at surfaces and connections
- Gas concentration (pollutants, water vapor, etc.) is a function of source strength and removal rate (ventilation)

=> Heat, air, and moisture flows drive performance!