Advanced Building Science

Fenestration

- Basic Components
- U-Factor
- Solar Heat Gain
- Visible Transmission
- Air Leakage
- Condensation Resistance
- Standards

Readings

- HF: Chapter 15
- HPE: Chapter 3.3.5 to 3.3.8

Basic Components

- Glazing
 - types (clear, tinted, coated, laminated, patterned, etc.)
- Insulating Glazing Units
 - glazing (see above)
 - spacer (materials & profile)
 - sealants
 - desiccants
 - gas fill (air, argon, krypton, xenon)
- Frame
 - operator type
 - material and profile
- Window Treatments & Shading

Window Types

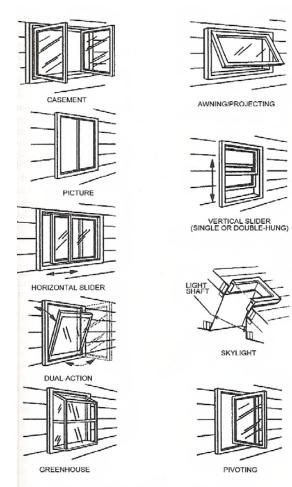


Fig. 2 Types of Residential Windows

U-Factor (Thermal Transmittance)

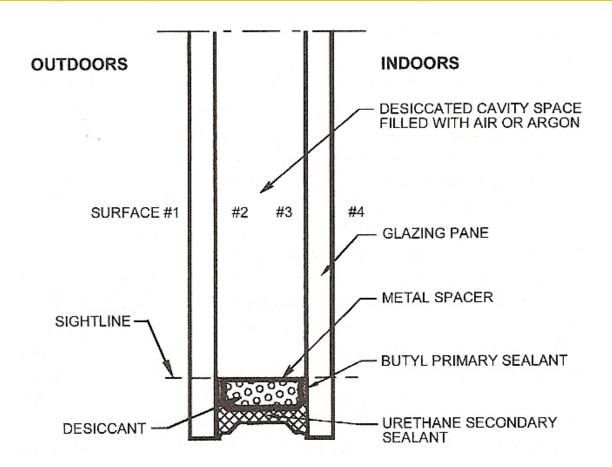
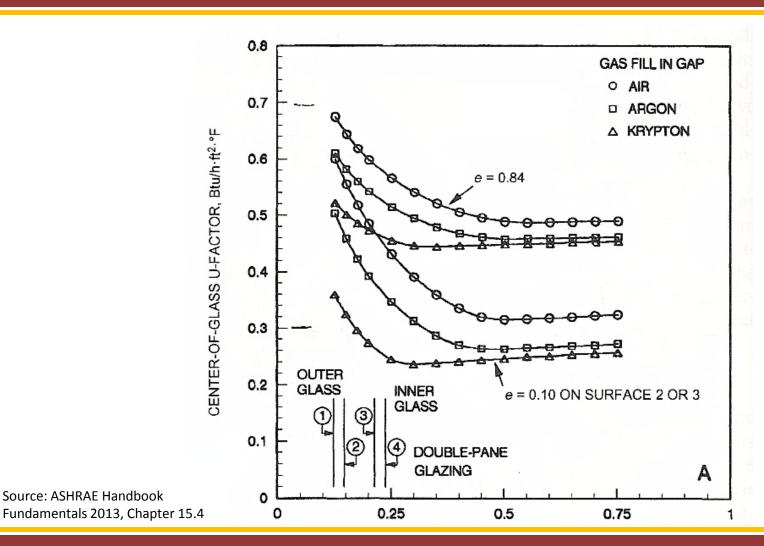
Center-of-glass

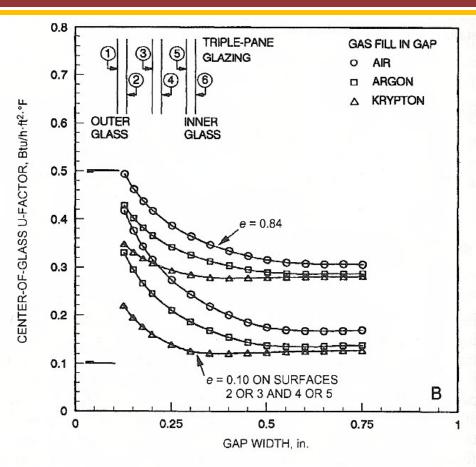
Edge-of-glass

Frame

Other (dividers, decorative grilles, and muntins)

Anatomy of an IGU


Fig. 1 Double-Glazing Unit Construction Detail

U-Factor for Double-Pane

Source: ASHRAE Handbook

U-Factor for Triple-Pane

Source: ASHRAE Handbook Fundamentals 2013,

Chapter 15.4

Center-of-Glass U-Factor for Vertical Double- and **Triple-Pane Glazing Units**

Typical U-Factors

Fenestration 15.5

Table 1 Representative Fenestration Frame U-Factors in Btu/h·ft2·°F, Vertical Orientation

						8	Pr	umber	mber of Glazing Layers									
	Type of	Operable		Fixed		Garden Window		Plant-Assembled Skylight		Curtain Walle			Sloped/Overhead Glazing ^e					
Frame Material	Spacer	1 ^b	2 ^c	3 ^d	1 ^b	2 ^c	3 ^d	1 ^b	2 ^c	1 ^b	2 ^c	3 ^d	1 ^f	2 g	3 ^h	1 ^f	2g	3 ^h
Aluminum without thermal break	All	2.38	2.27	2.20	1.92	1.80	1.74	1.88	1.83	7.85	7.02	6.87	3.01	2.96	2.83	3.05	3.00	2.87
Aluminum with thermal break ^a	Metal Insulated	1.20 N/A	0.92 0.88	0.83 0.77	1.32 N/A	1.13 1.04	1.11 1.02			6.95 N/A	5.05 4.75	4.58 4.12	1.80 N/A	1.75 1.63	1.65 1.51	1.82 N/A	1.76 1.64	1.66 1.52
Aluminum-clad wood/ reinforced vinyl	Metal Insulated	0.60 N/A	0.58 0.55	0.51 0.48	0.55 N/A	0.51 0.48	0.48 0.44			4.86 N/A	3.93 3.75	3.66 3.43						
Wood/vinyl	Metal Insulated	0.55 N/A	0.51 0.49	0.48 0.40	0.55 N/A	0.48 0.42	0.42 0.35	0.90 N/A	0.85 0.83	2.50 N/A	2.08 2.02	1.78 1.71						
Insulated fiber- glass/vinyl	Metal Insulated	0.37 N/A	0.33 0.32	0.32 0.26	0.37 N/A	0.33 0.32	0.32 0.26											
Structural glazing	Metal Insulated												1.80 N/A	1.27 1.02	1.04 0.75	1.82 N/A	1.28 1.02	1.05 0.75

Note: This table should only be used as an estimating tool for early phases of design.

^aDepends strongly on width of thermal break. Value given is for 3/8 in.

bSingle glazing corresponds to individual glazing unit thickness of 1/8 in. (nominal).

^{*}Double glazing corresponds to individual glazing unit thickness of 3/4 in. (nominal).

^dTriple glazing corresponds to individual glazing unit thickness of 1 3/8 in. (nominal).

eGlass thickness in curtainwall and sloped/overhead glazing is 1/4 in.

fSingle glazing corresponds to individual glazing unit thickness of 1/4 in. (nominal).

^gDouble glazing corresponds to individual glazing unit thickness of 1 in. (nominal).

^hTriple glazing corresponds to individual glazing unit thickness of 1 3/4 in. (nominal). N/A: Not applicable

Assumed Indoor Surface Film Coefficients

15.6

2009 ASHRAE Handbook—Fundamentals

Table 2 Indoor Surface Heat Transfer Coefficient h_i in Btu/h·ft²·°F, Vertical Orientation (Still Air Conditions)

		7,31.4	Glazing Height, ft	W	inter Conditi	ons ^b	Summer Conditions ^c			
Glazin; ID ^a	g Glazing Type			Glass Temp., °F	Temp. Diff., °F	h _i , Btu/h·ft²·°F	Glass Temp., °F	Temp. Diff., °F	h _i , Btu/h•ft²•°F	
1	Single glazing	-	2	17	53	1.41	89	14	1.41	
,			4	17	53	1.31	89	14	1.33	
			6	17	53	1.25	89	14	1.29	
5	Double glazing with		2	45	25	1.36	89	14	1.41	
Ž	1/2 in. air space		4	45	25	1.27	89	14	1.33	
	•		6	45	25	1.22	89	14	1.29	
23	Double glazing with		2	56	14	1.31	87	12	1.38	
	e = 0.1 on surface 2		4	56	14	1.23	87	12	1.31	
	and 1/2 in. argon space		6	56	14	1.19	87	12	1.27	
43	Triple glazing with		2	63	7	1.25	93	18	1.45	
15	e = 0.1 on surfaces 2 and 5		4	63	7	1.18	93	18	1.36	
	and 1/2 in. argon spaces		6	63	7	1.15	93	18	1.32	

Notes:

^aGlazing ID refers to fenestration assemblies in Table 4.

bWinter conditions: room air temperature $t_i = 70^{\circ}\text{F}$, outdoor air temperature $t_o = 0^{\circ}\text{F}$, no solar radiation

[°]Summer conditions: room air temperature t_i = 75°F, outdoor air temperature t_o = 89°F, direct solar irradiance E_D = 248 Btu/h·ft²

 $h_i = h_{ic} + h_{iR} = 1.46(\Delta T/L)^{0.25} + \varepsilon \sigma (T_i^4 - T_g^4)/\Delta T$, where $\Delta T = T_i - T_g$, °R; L = glazing height, ft; $T_g =$ glass temperature, °R; $\sigma =$ Stefan-Boltzmann constant; and $\varepsilon =$ surface emissivity.

Solar Heat Gain & Visible Transmittance

- Incident Solar Radiation
 - spectral irradiances
 - solar angles
 - optical properties
- Solar Heat Gain Coefficient
 - old method used shading coefficient
- Visible Transmittance
- Total Solar Gain
 - beam + diffuse
- Shading Devices
 - angle dependency (profile angle)

Solar Spectrum

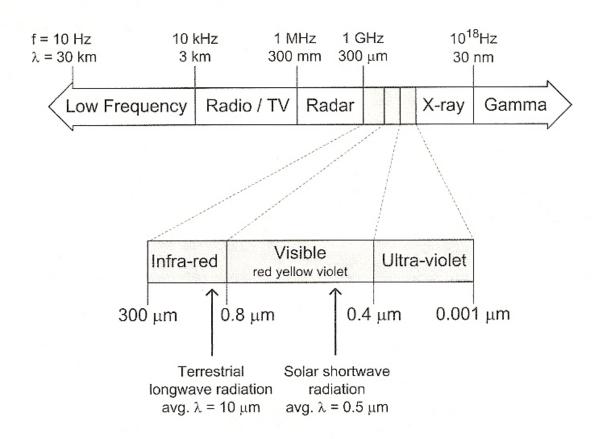
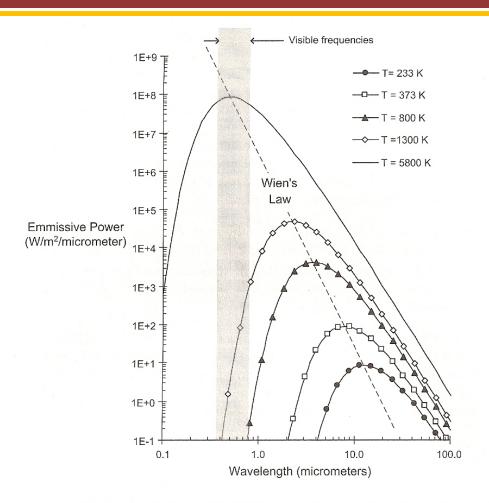



Figure 4.3: Wavelength and frequency ranges for common types of electromagnetic radiation

Source: Straube & Burnett, Building Science for Building Enclosures, Chapter 4

Spectral Distribution

Source: Straube & Burnett, Building Science for Building Enclosures, Chapter 4

Figure 4.4: Plank's spectral distribution of thermal radiation from a black body

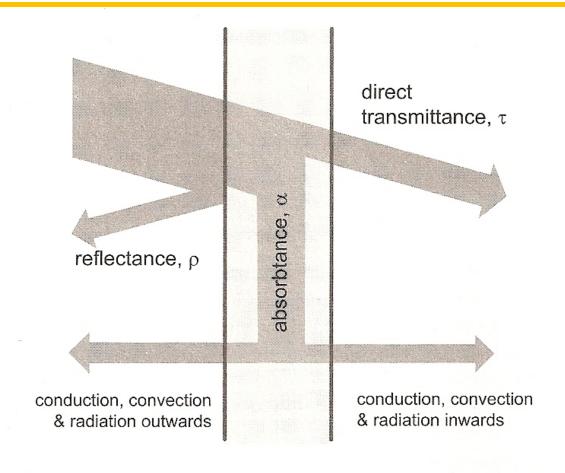

Key Wavelengths

Table 4.1: Wavelength versus color

Color	Wavelength range (μm)
IR-C "Far Infra-Red"	3.00 - 1000
IR-B	1.40 - 3.00
IR-A "Near Infra- Red"	0.780 - 1.49
Red	0.610 - 0.830
Orange	0.591 - 0.610
Yellow	0.570 - 0.591
Green	0.500 - 0.570
Blue, Indigo	0.450 - 0.500
Violet	0.360 - 0.450
UV-A	0.315 - 0.400
UV-B	0.280 - 0.315
UV-C	0.100 - 0.280

Source: Straube & Burnett, Building Science for Building Enclosures, Chapter 4

Solar Gain on Windows

Source: Straube & Burnett, Building Science for Building Enclosures, Chapter 4

Figure 4.5: Reflectance, transmittance, and absorptance for glass

Transmittance vs. Reflectance

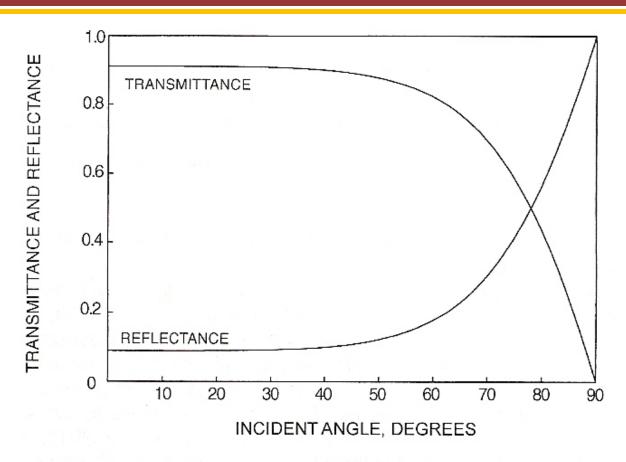


Fig. 7 Transmittance and Reflectance of Glass Plate (Refractive index n = 1.55, thickness t = 1/8 in., absorptivity $\alpha = 0.0003$ in.)

Incident Angle

2009 ASHRAE Handbook—Fundamentals

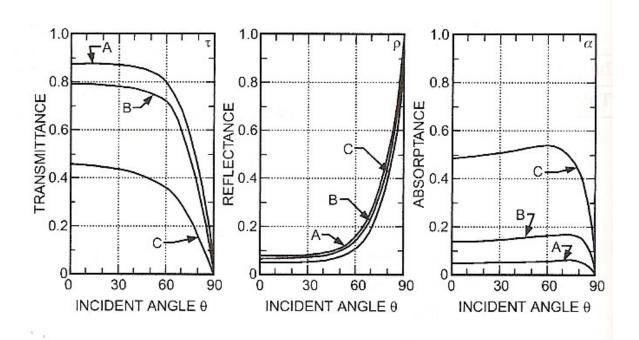


Fig. 8 Variations with Incident Angle of Solar-Optical Properties for (A) Double-Strength Sheet Glass, (B) Clear Plate Glass, and (C) Heat-Absorbing Plate Glass

Spectrally Selective Glass

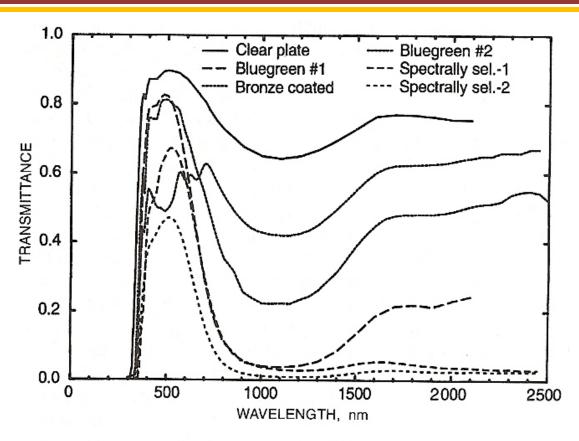


Fig. 9 Spectral Transmittances of Commercially
Available Glazings
(McCluney 1993)

Wavelength Responses

A good reflector in one part of the spectrum can be a poor reflector and a good absorber in another part.

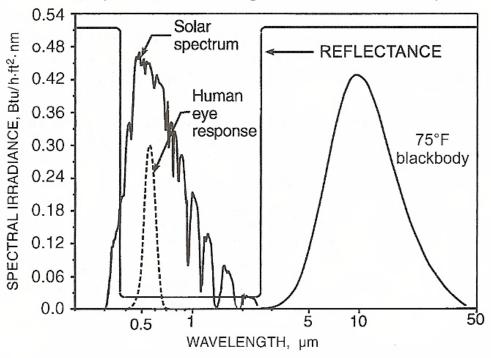


Fig. 11 Solar Spectrum, Human Eye Response Spectrum, Scaled Blackbody Radiation Spectrum, and Idealized Glazing Reflectance Spectrum

Idealized Glass Transmittance

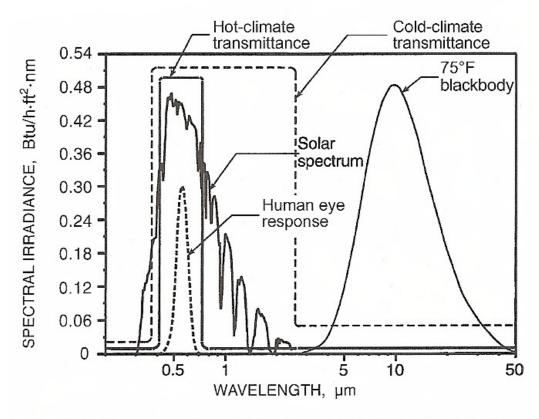


Fig. 12 Demonstration of Two Spectrally Selective Glazing Concepts, Showing Ideal Spectral Transmittances for Glazings Intended for Hot and Cold Climates

Solar Radiation Heat Gain

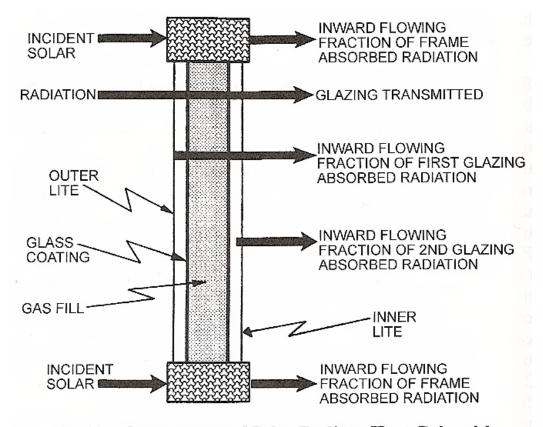


Fig. 13 Components of Solar Radiant Heat Gain with Double-Pane Window, Including Both Frame and Glazing Contributions

Solar Radiation Heat Gain

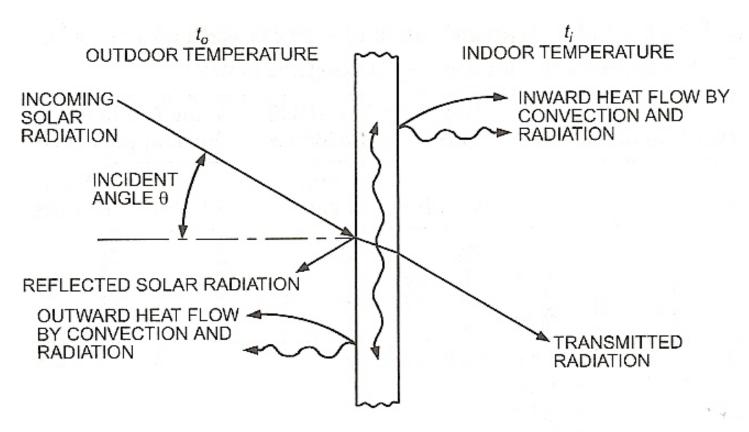
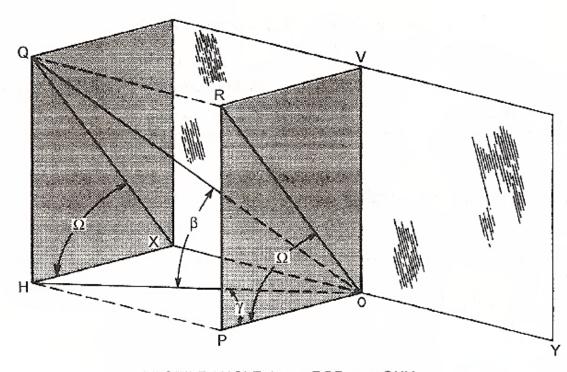



Fig. 14 Instantaneous Heat Balance for Sunlit Glazing Material

Sun Angles & Shading Devices

PROFILE ANGLE Ω = \angle ROP or \angle QXH SOLAR ALTITUDE β = \angle QOH SURFACE SOLAR AZIMUTH γ = \angle HOP TAN Ω = TAN β /COS γ

Fig. 15 Profile Angle for South-Facing Horizontal Projections

Sun Angles & Shading Devices

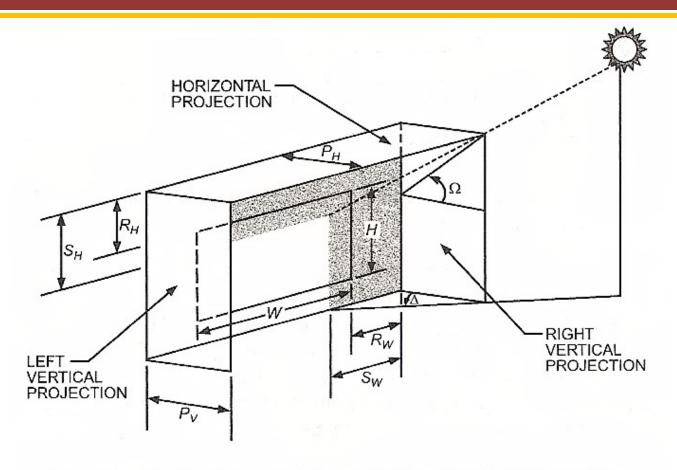


Fig. 16 Vertical and Horizontal Projections and Related Profile Angles for Vertical Surface Containing Fenestration

Air Leakage

Not as significant as one might expect

- For window units, it is usually given in
 - cfm per linear foot of crack
 - cfm per unit area
- Installation leakage can be far greater than unit leakage

Daylighting

- Important, but beyond our scope
- From an energy perspective
 - Useful in residential, but very difficult to quantify
 - Very important in commercial, because daylight can produce a similar amount of light with less heat energy
 - but becoming less so with CFL & LED technologies
- But this issue is bigger than energy,
 - Some evidence of productivity, learning, and health benefits

Visible Transmittance

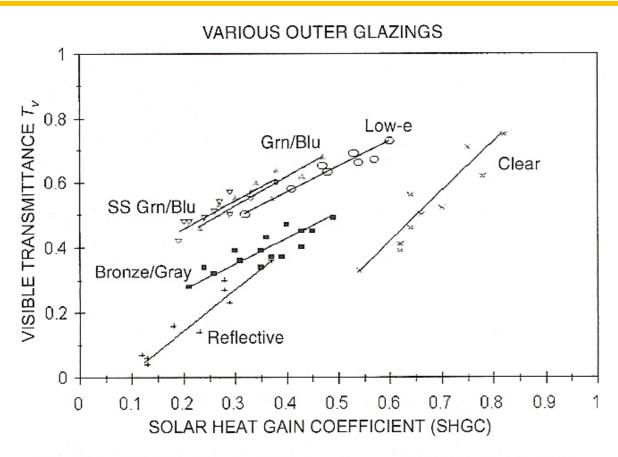


Fig. 24 Visible Transmittance Versus SHGC for Several Glazings with Different Spectral Selectivities

Condensation

Temperature distribution for a typical window

Glass surface temperatures

 Condensation index, condensation resistance factor, and temperature index

Vertical Temperature Distribution

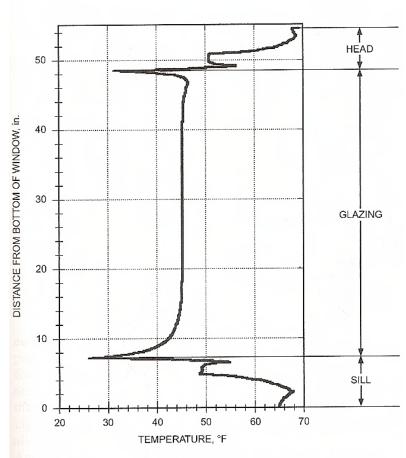


Fig. 26 Temperature Distribution on Indoor Surfaces of Glazing Unit

Indoor Surface Temperatures

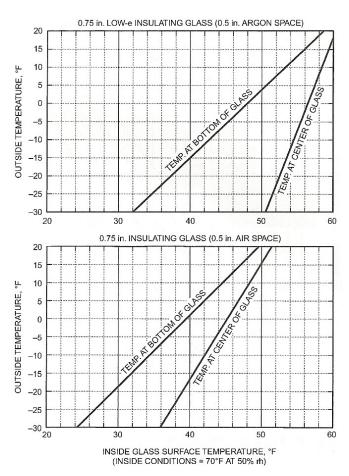


Fig. 27 Minimum Indoor Surface Temperatures Before Condensation Occurs

Condensation Resistance

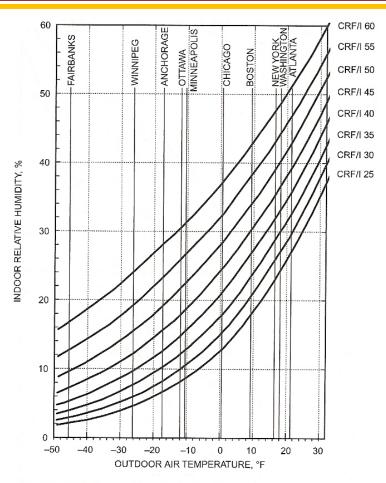


Fig. 28 Minimum Condensation Resistance Requirements $(t_h = 68^{\circ}F)$

Window Condensation

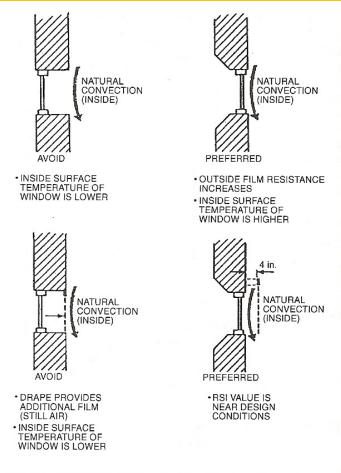


Fig. 29 Location of Fenestration Product Reveals and Blinds/Drapes and Their Effect on Condensation Resistance

Occupant Comfort and Acceptance

- Thermal comfort
 - glass temperature
 - air movement
 - solar gain
- Visual comfort
- Sound reduction
- Safety and security
- Life-cycle costs

Windows & Thermal Comfort

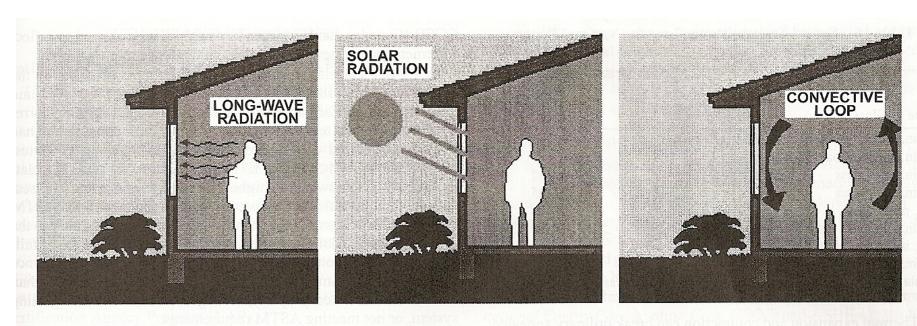


Fig. 30 Fenestration Effects on Thermal Comfort: Long-Wave Radiation, Solar Radiation, Convective Draft

- Standards
 - National Fenestration Ratings Council (NFRC)

Absortpance & Emittance

Table 4.5: Absorptance and emittance of common building materials

Material	Solar absorptance (α)	Thermal emittance (ε)				
Most common materials	Varies with color and texture	0.90				
Red brick	0.60 - 0.80	0.90				
Yellow or buff brick	0.50 - 0.70	0.90				
White or cream stucco or brick	0.30 - 0.45	0.90				
Black, non-metallic surfaces	0.85 - 0.95	0.90 – 0.98				
Bright aluminum paint	0.20 - 0.30	0.30 - 0.40				
Polished aluminum (foil)	0.10 - 0.30	0.03 – 0.04				
Spectrally selective surfaces	>0.85	< 0.12				
Window glass	0.04 - 0.40	0.90 - 0.94				
Ice	0.03 – 0.15	0.95				
Snow – fresh	0.20 - 0.30	0.90				
Zinc galvanized sheet	New 0.2, oxidized 0.65	0.20 – 0.30				
Green anodized aluminum	0.66	0.88				
Machine-rolled stainless steel	0.40	0.11				
Uncolored concrete	0.65 - 0.68	0.90				
Water	0.84 - 0.93	0.90				
Green grass	0.74	0.90				

Source: Straube and Burnett, Building Science for Building Enclosures, Chapter 4

In Summary

Questions and Discussion

Next Class

- Building Loads
 - Intro to Loads
 - Heating Load Calculations

- HF: Chapter 17; Chapter 18 (review only)
- HPE: Appendix A (supplemental)