Advanced Building Science

- Moisture Control in Insulated Assemblies
 - General moisture concerns
 - Moisture in building materials
 - Moisture migration
 - Vapor diffusion vs. convective mass transport

Readings

- HF: Chapter 25 => 25.10 to 25.17
- HF: Chapter 26 => 26.13 to 26.20
- HF: Chapter 27 => 27.7 to 27.12
- HPE: Chapter 3.5 & 3.6
- BG: Pages 105 to 130 (Appendix II & III for editions prior to 2004)

Moisture Control in Insulated Buildings

General Moisture Concerns

- Invisible
 - degradation of thermal resistance
 - decrease in strength/stiffness of building materials (esp. wood)
- Visible
 - mold and mildew
 - decay of wood-based materials
 - spalling of brick, masonry, and concrete
 - hydration of plastic materials
 - corrosion of metals
 - damage due to expansion
 - decline in visual appearance

Moisture Control in Insulated Buildings

Moisture in Building Materials

- Typical sorption isotherms for hygroscopic materials
 - adsorption => as relative humidity rises, materials gain moisture
 - desorption => as relative humidity drops, materials lose moisture
 - hysteresis => differential isotherms for wetting and drying

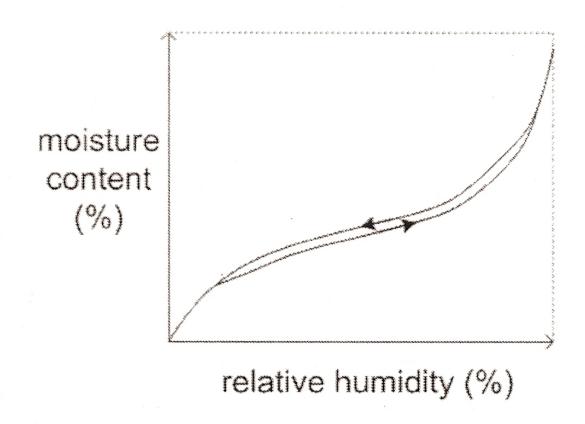


Figure 8.18: Typical sorption isotherm of a hygroscopic material

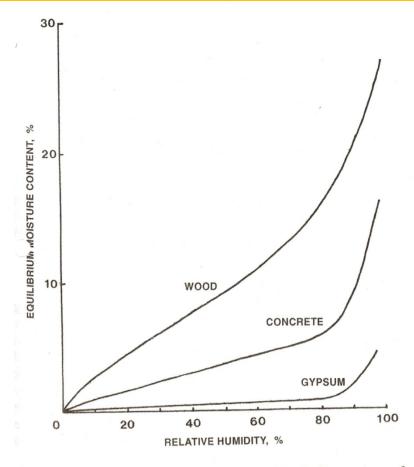


Fig. 9 Typical Sorption Isotherms for Wood, Concrete, and Gypsum (Hysteresis Is Ignored)

Source: ASHRAE Fundamentals Handbook 2005, Chapter 23.6

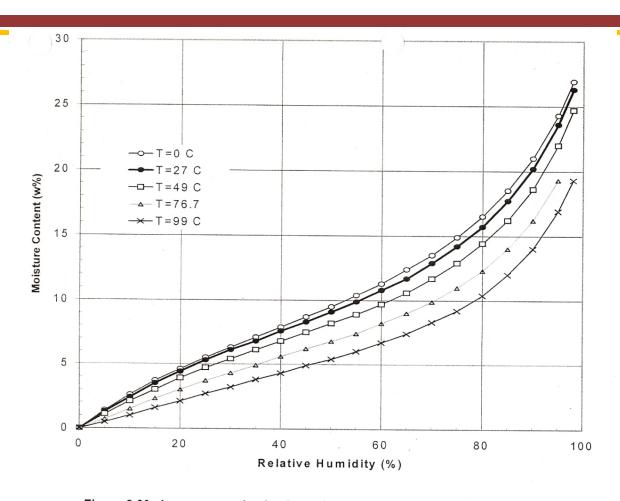


Figure 8.20: Average sorption isotherm for wood as a function of temperature

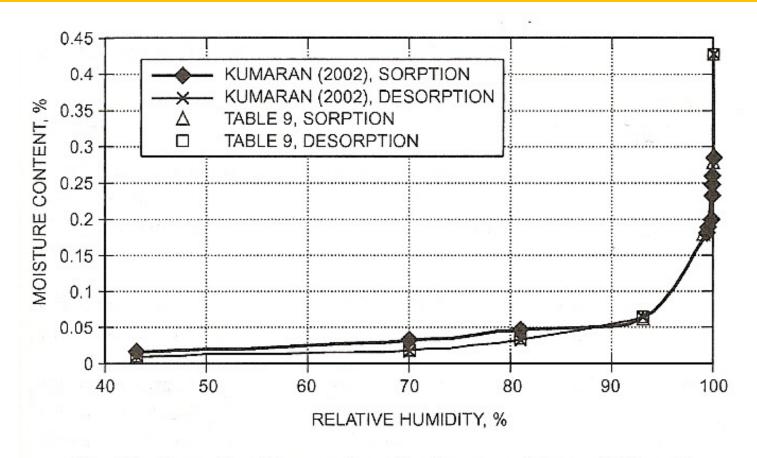


Fig. 8 Sorption/Desorption Isotherms, Cement Board

SOURCE: ASHRAE Handbook Fundamentals 2009, Chapter 26

Heat, Air, and Moisture Control in Building Assemblies—Fundamentals

25.9

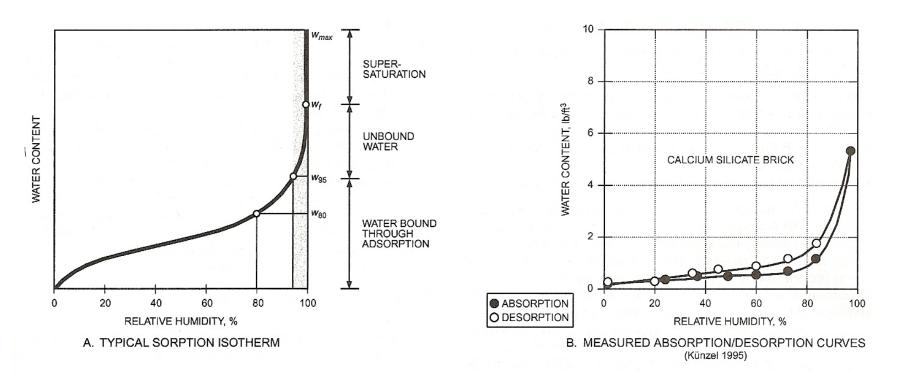


Fig. 6 Sorption Isotherms for Porous Building Materials

SOURCE: ASHRAE Handbook Fundamentals 2009, Chapter 25

8. Moisture Storage and Transport Processes in Porous Media

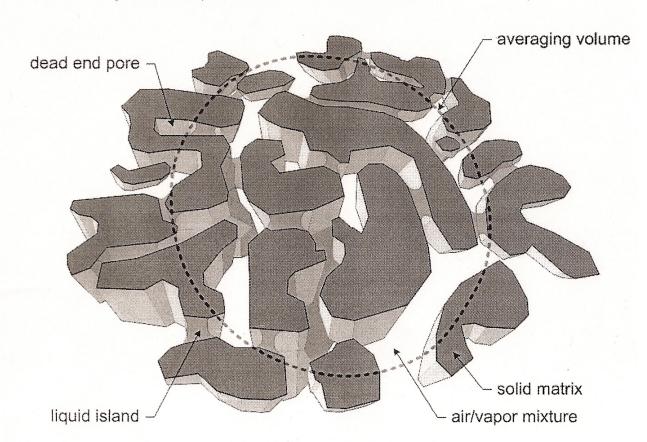
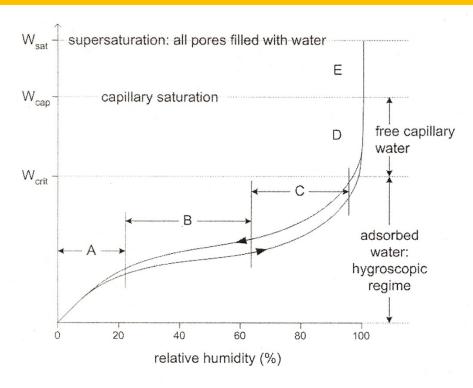



Figure 8.3: Porous Media Definitions

Table 8.1: Moisture contents of some common building materials

Material	Density (Dry)	Open Porosity	MC @ ≅95%RH	w _{cap}
	kg/m ³	(%)	(M%)	(M%)
Concrete	2200	15-18	4-5	6-8
Brick	1600-2100	11-40	3-8	6-20
Cement Mortar	1800-1900	20-30	5-7	14-20
Softwood	400-600	50-80	20-30	100-200
Fibreboard	240-380	60-80	20-25	100-200
Wood chipboard	700	50-70	15-20	100-150
Expanded	32	95	5	>300
polystyrene				
Gypsum (exterior)	1000	70	10	50-100

- A: Single-layer of adsorbed molecules
- B: Multiple layers of adsorbed molecules
- C: Interconnected layers (internal capillary condensation
- D: Free water in Pores, capillary suction
- E: Supersaturated Regime

Figure 8.21: Regimes of moisture storage in a hygroscopic porous material

25.12

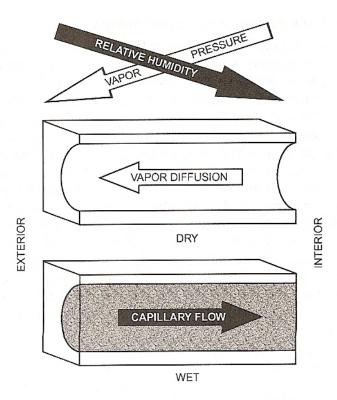
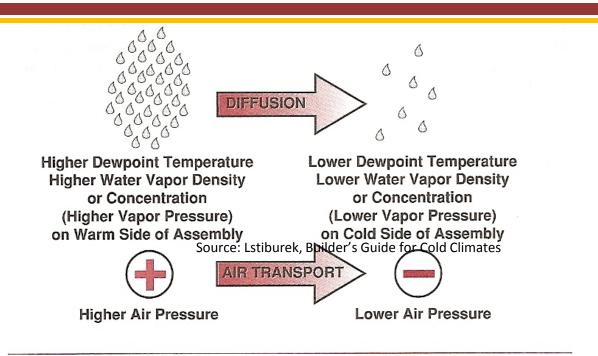


Fig. 10 Moisture Fluxes by Vapor Diffusion and Liquid Flow in Single Capillary of Exterior Wall under Winter Conditions


SOURCE: ASHRAE Handbook Fundamentals 2009, Chapter 25

Moisture Control in Insulated Buildings

Moisture Migration

- Liquid
 - bulk flow by gravity or air pressure
 - capillary suction in porous materials
- Vapor
 - convective mass transport due to air pressure difference
 - diffusion due to vapor pressure difference

Water Vapor Transport

Figure III.1 Water Vapor Movement

- Vapor diffusion is the movement of moisture in the vapor state as a result of a vapor pressure difference (concentration gradient) or a temperature difference (thermal gradient)
- Air transport is the movement of moisture in the vapor state as a result of an air pressure difference

Water Vapor Transport

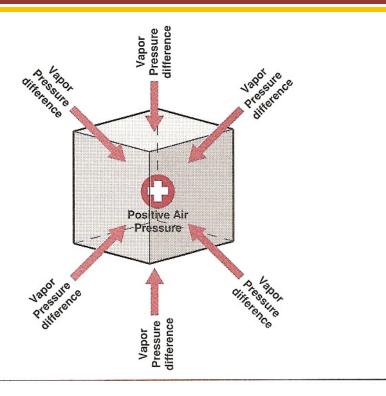
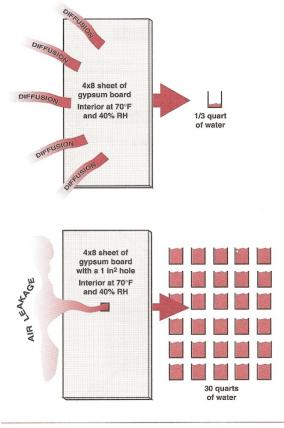



Figure III.2
Opposing Air and Vapor Pressure Differences

- The atmosphere within the cube is under higher air pressure but lower vapor pressure relative to surroundings
- Vapor pressure acts inward in this example
- Air pressure acts outward in this example

Water Vapor Transport

Figure III.4 Diffusion vs. Air Leakage

 In most cold climates over an entire heating season, 1/3 of a quart of water can be collected by diffusion through gypsum board without a vapor diffusion retarder; 30 quarts of water can be collected through air leakage

Moisture Control in Insulated Buildings

Air Barriers

- Fundamental to good building performance
- Function of leakage and humidity ratio
- Highly dependent on execution
- Requirements for Air Barriers
 - Impermeable to air flow
 - Continuous over the entire building envelope
 - Able to withstand forces acting on it
 - Durable over the life of the building

Moisture Control in Insulated Buildings

- Vapor Diffusion Retarders
 - Important, but frequently overstated
 - Function of material properties and vapor pressure
 - Primarily dependent on design and materials

- Requirements for Vapor Diffusion Retarders
 - Low permeability
 - Full coverage, but not necessarily continuous
 - Durable over the life of the building

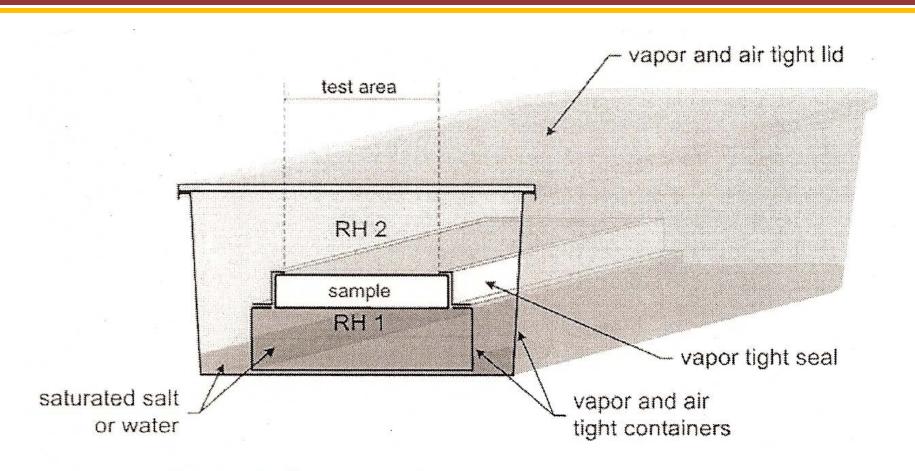


Figure 8.29: Test apparatus for measuring vapor permeance

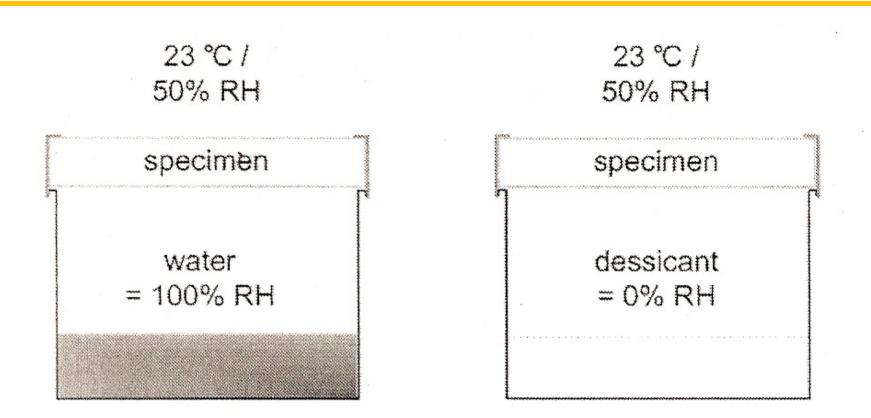


Figure 8.30: Wet cup and dry cup vapor permeance tests

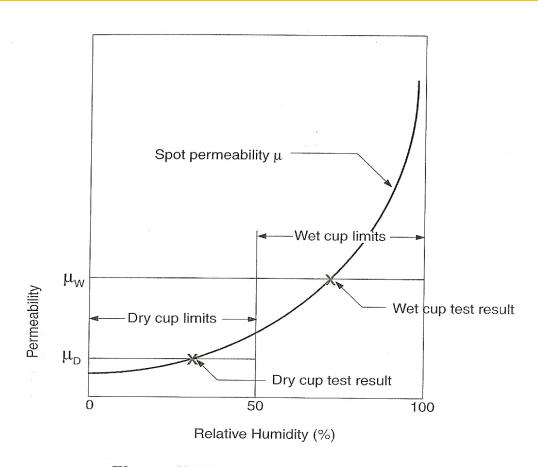


Figure III.3 Permeability vs. Relative Humidity

Heat, Air, and Moisture Control in Building Assemblies—Material Properties

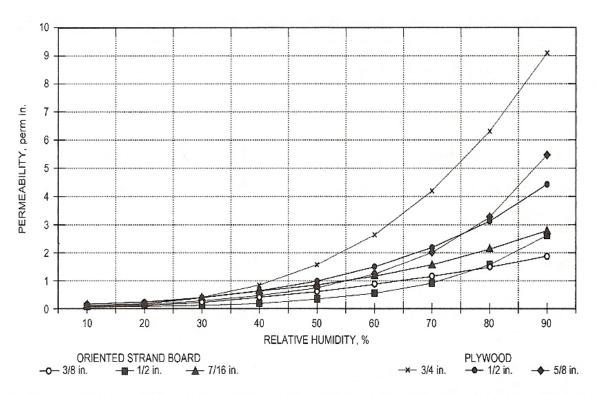


Fig. 7 Permeability of Wood-Based Sheathing Materials at Various Relative Humidities

Source: ASHRAE Handbook Fundamentals 2009, Chapter 26

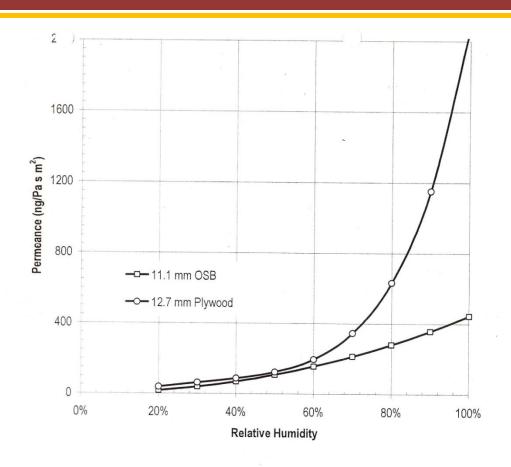
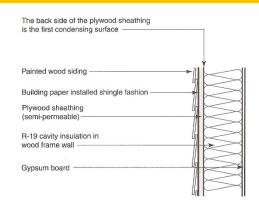



Figure 8.27: Vapor permeability test results for wood-based products as a function of RH [Kumaran et al 2002]

Condensation Potential

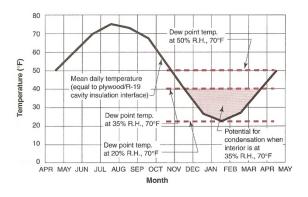
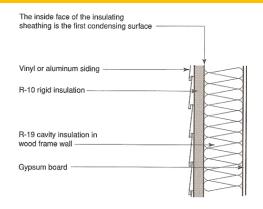



Figure III.9
Potential for Condensation in a Wood Frame Wall Cavity in Chicago, Illinois
(Gold Climate)

- By reducing interior moisture levels, the potential condensation is reduced or eliminated
- \bullet No condensation occurs if interior moisture levels are maintained below 20% RH at 70°F

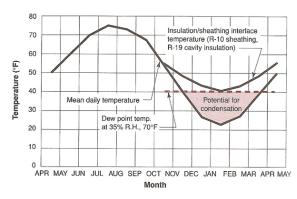


Figure III.10 Potential for Condensation in a Wood Frame Wall Cavity Without an Interior Vapor Diffusion Retarder in Chicago, Illinois

The R-10 insulating sheathing raises the dew point temperature at the first condensing surface (cavity side of the foam sheathing) so that no condensation will occur when interior moisture levels are less than 35% relative humidity at 70°F
 Source 1stiburek Builder's Guid

Moisture Control in Insulated Buildings

Dew Point Calculation Method

- 1. Find temperature of each surface/interface
- 2. Find saturation vapor pressure for those temperatures
- 3. Calculate the vapor pressure drop
- 4. Compare saturation and calculated vapor pressures
- 5. Where calculated vapor pressure is greater than saturation, fix that surface at the saturation pressure
- 6. Recalculate the vapor pressure drops in two parts

Example 1 - ASHRAE

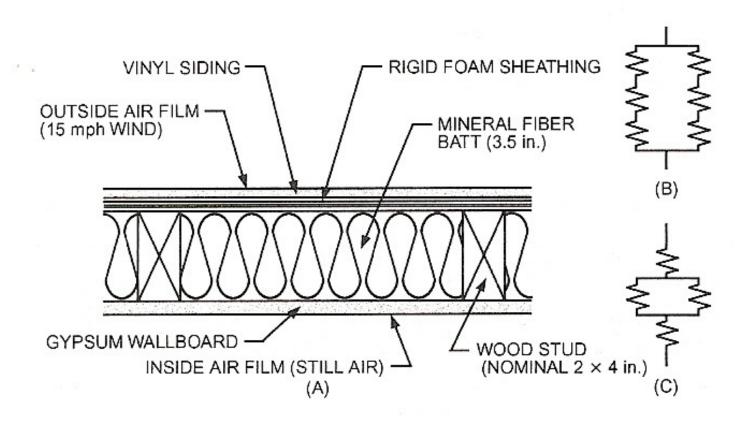


Fig. 3 (A) Wall Assembly for Example 3, with Equivalent Electrical Circuits: (B) Parallel Path and (C) Isothermal Planes

Source: ASHRAE Handbook Fundamentals 2009, Chapter 27

Air Film or Material	Thermal Resistance, h·°F·ft ² /Btu	Propor- tional Temper- ature Drop	Vapor Per- meance, perm	Vapor Diffusion Resistance, rep	Propor- tional Vapor Pressure Drop
1. Air film coefficient	0.68	0.049	160	0.006	0.003
Gypsum boar painted, crack joints	*	0.032	5	0.200	0.088
3. Insulation, mineral fiber	11	0.790	30	0.033	0.015
4. OSB sheathing	0.62	0.045	0.5	2.0	0.881
5. Wood siding	1.0	0.072	35	0.029	0.013
Air film coefficient	0.17	0.012	1000	0.001	0.000
Tot	als 13.92	1.000	•	2.27	1.000

Source: ASHRAE Handbook Fundamentals, Chapter 27

Boundary or		Saturation	Initial	Corrected		
Interface Between Materials	Temper- ature, °F	Vapor Pressure, in. Hg	Relative Humidity, %	Vapor Pressure, in. Hg	Vapor Pressure, in. Hg	
Indoor air	70	0.740	50	0.370	0.370	
1-2 interface	67.6	0.680		0.369	0.364	
2-3 interface	65.9	0.643		0.343	0.171	
3-4 interface	26.4	0.139		0.339	0.139	
4-5 interface	24.2	0.126		0.076	0.073	
5-6 interface	20.6	0.106		0.072	0.072	
Outdoor air	20	0.103	70	0.072	0.072	
Difference	50		Difference	0.298		

Source: ASHRAE Handbook Fundamentals, Chapter 27

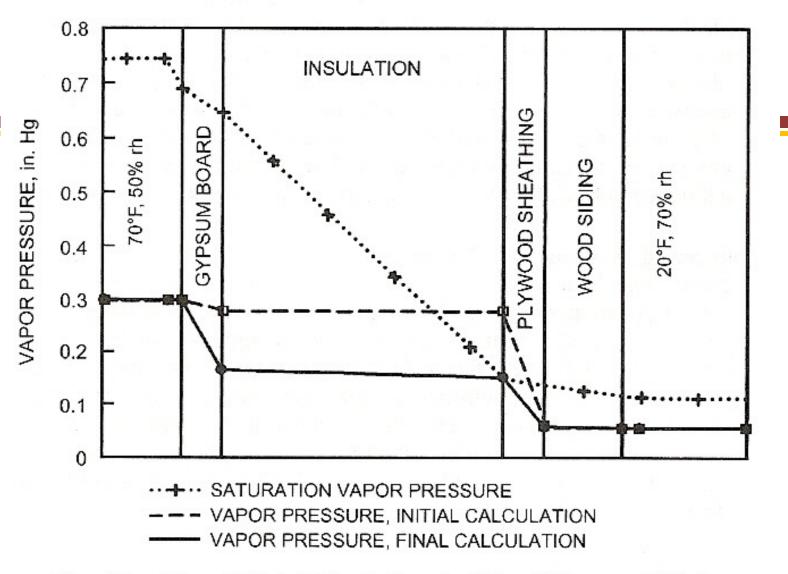


Fig. 12 Dew-Point Calculation in Wood-Framed Wall
(Example 9)

Source: ASHRAE Handbook Fundamentals, Chapter 27

2009 ASHRAE Handbook—Fundamentals

Air Film or Material	Thermal Resis- tance R, h·ft ² ·°F/ Btu	Proportional Temperature Drop	Vapor Perme- ance, perm	Vapor Diffusion Resistance, h·ft ² ·in. Hg/ gr	Proportional Vapor Pressure Drop
1. Air film coefficient	0.68	0.035	160	0.006	0.000
2. Gypsum board, painted	0.45	0.023	5	0.200	0.002
Polyethylene foil	0.0	0.000	0.01	125	0.974
4. Insulation, mineral fiber	11.0	0.573	30	0.033	0.000
5. OSB sheathing	0.62	0.032	0.5	2.000	0.016
6. EPS	5.7	0.297	1.3	0.769	0.006
7. EIFS stucco lamina and finish	0.57	0.030	3.2	0.313	0.002
8. Air film coefficient	0.17	0.009	1000	0.001	0.000
Total	19.19	1.000		128	1.000

Source: ASHRAE Handbook Fundamentals 2009, Chapter 27

Winter conditions:

	Temperature, °F	Saturated Vapor Pressure, in. Hg	Relative Humidity, %	Initial Vapor Pressure, in. Hg	Vapor Pressure, in. Hg
Indoors	70	0.740	40	0.296	0.296
1 and 2	68.22	0.696		0.296	0.296
2 and 3	67.05	0.668		0.295	0.296
3 and 4	67.05	0.668		0.057	0.233
4 and 5	38.39	0.233		0.057	0.233
5 and 6	36.78	0.218		0.053	0.218
6 and 7	21.93	0.113		0.052	0.215
7 and 8	20.44	0.105		0.051	0.177
Outdoors	20	0.103	50	0.051	0.051
Difference	50		Difference	0.244	19

Summer conditions:

	Temperature, °F	Saturated Vapor Pressure, in. Hg	Relative Humidity, %	Initial Vapor Pressure, in. Hg	Vapor Pressure, in. Hg
Indoors	77	0.936	70	0.655	0.655
1 and 2	76.9	0.931		0.655	0.680
2 and 3	76.8	0.929		0.655	0.705
3 and 4	76.8	0.929		0.575	0.731
4 and 5	74.5	0.860		0.575	0.860
5 and 6	74.3	0.857		0.574	0.857
6 and 7	73.2	0.823		0.573	0.764
7 and 8	73.0	0.820		0.573	0.669
Outdoors	73	0.819	70	0.573	0.573
Difference	4		Difference	0.082	

Source: ASHRAE Handbook Fundamentals, Chapter 27

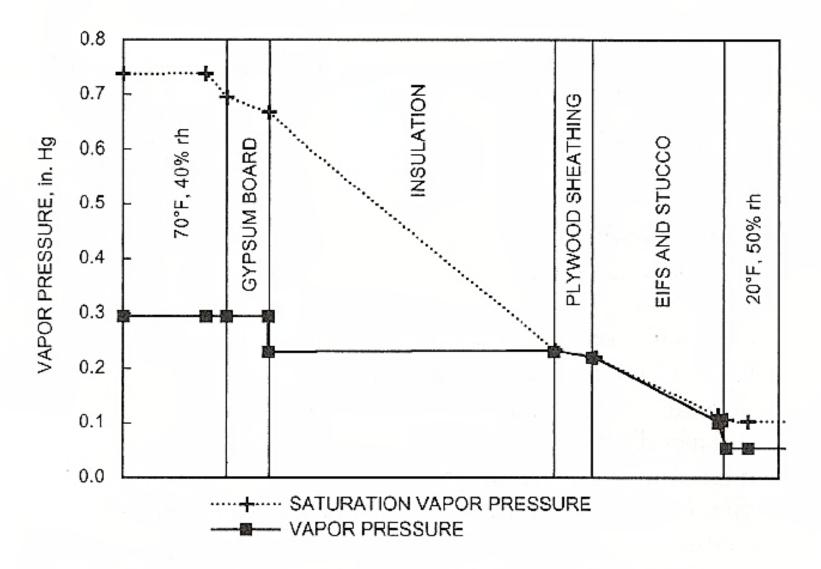


Fig. 13 Drying Wet Sheathing, Winter (Example 10)

Source: ASHRAE Handbook Fundamentals, Chapter 27.11

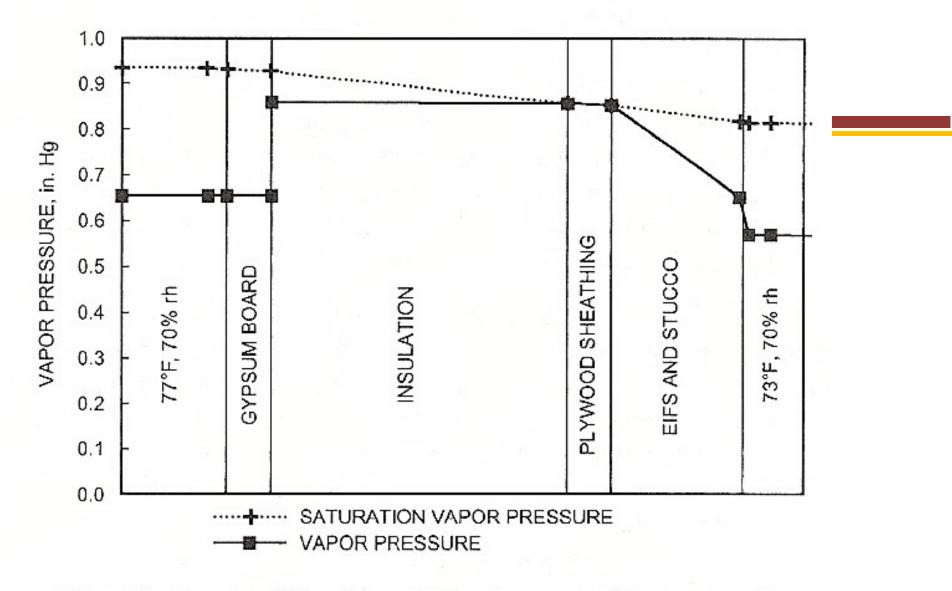


Fig. 14 Drying Wet Sheathing, Summer (Example 10)

Source: ASHRAE Handbook Fundamentals, Chapter 27.11

Example 2 - BSBE

6.5.1 Vapor pressure distribution

Example

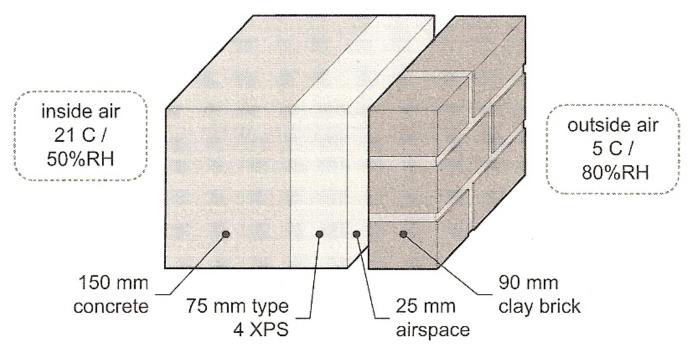


Table 6.6: Temperature and saturation vapor pressure through the example wall assembly

Layer Material	K (W/ m·K)	t [m]	C _i (W/ m²·K)	R _i (m²·K /W)	ΔT (°C)	T (°C)	P _{w,sat} (Pa)
Interior						21.0	2497.4
Interior film	-	_	8.0	0.13	0.7		000,000,000,000,000,000,000,000,000,00
			uuteria suomenen (il sennessa sisse si apussuus on mineria tainenessa sisteminin mineria (il sennessa sistemini			20.3	2399.0
Concrete	1.8	0.15	12.0	0.083	0.4		
						19.9	2335.3
Type 4 XPS	0.029	0.075	0.39	2.59	13.5		
	.075		'				
						6.4	996
Air space	-	0.025	5.9	0.17	0.9		
						5.5	909
Brick	1.3	0.090	14.4	0.069	0.4		
				makes at the Annual Annual at the resembles for the Schild Annual		5.2	886
Exterior film	_	-	34.0	0.029	0.2		
				.154			
Exterior						5.0	877
			RSI _{total}	3.06			

Table 6.5: Vapor pressure distribution through the example wall assembly

Layer material	μ (ng/Pa·s·m)	t [m]	M _i (ng/Pa·s·m²)	R _{v,i} (Pa·s·m²/ng)	$\Delta P_{ m w}$ (Pa)	P _w (Pa)
	Permeability (material property)	Thickness (system property)	$M=\mu/t$	M^{I}	ΔP_{v} · $R_{vi}/\Sigma R_{v}$	At interface
Interior						1249
Interior film	-	_	15000	0.000067	0.3	
		-				1248
Concrete	2.6	0.150	17.3	0.058	302.4	
						946
Type 4 XPS	2.0	0.075	26.7	0.038	196.5	Mo-Homer Paur group 6 6 4 6 6 6 6 Maria International Paur C 6 6 A International Paur C Homer
					***************************************	749
Air space	_	0.025	7200.	0.00014	0.7	
						749
Brick	10.0	0.090	111.1	0.0090	47.2	
						702
Exterior film	_	_	75000.	0.000013	0.1	
Exterior						701
		***************************************	ΣR_v	0.104	$\Sigma\Delta P_{\mathrm{w}}$	547

Table 6.7: Temperature, saturation vapor pressure, vapor pressure, and RH

Layer Material	T (°C)	P _{w,sat} (Pa)	P _w (Pa)	RH (%)
Interior	21.0	2497	1249	50
Interior film			arrows alter or wasterns associatement of the side of	
	20.3	2399	1248	52
Concrete				
	19.9	2335	946	41
Type 4 XPS				12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -
	6.4	996	749	78
Air space				
	5.5	909	749	82
Brick				
***************************************	5.2	886	702	79
Exterior film				
Exterior	5.0	877	701	80

Example 3 - BSBE

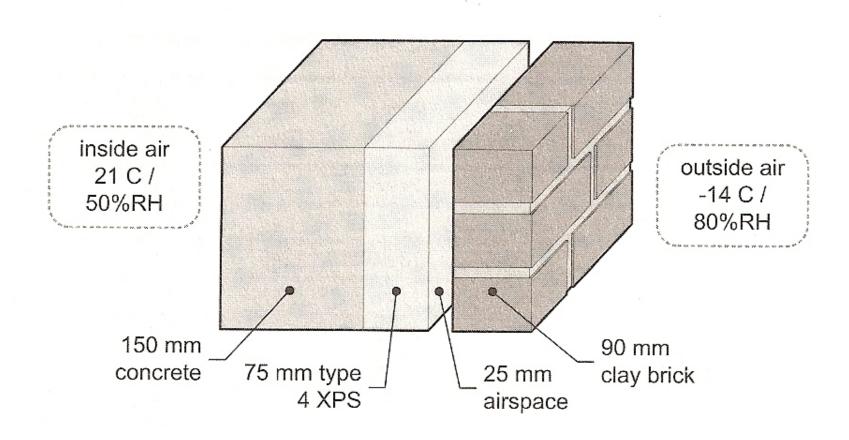


Table 6.8: Temperature, saturation vapor pressure, vapor pressure, and RH

Layer Material	T (°C)	P _{w,sat} (Pa)	P _w (Pa)	RH (%)
Interior	21.0	2497	1249	50
Interior film				
	19.6	2287	1248	55
Concrete				
	18.6	2155	650	30
Type 4 XPS				
	-10.9	268	262	98
Air space				
	-12.9	229	261	114
Brick				
	-13.7	215	167	78
Exterior film				
Exterior	-14.0	209	167	80

Table 6.9: Corrected vapor pressure distribution for a wall with condensation

Layer Material	M _i (ng/Pa·s·m²)	R _{v,i} (Pa·s·m²/ ng)	T (°C)	P _{w,sat} (Pa)	P _w (Pa)	RH (%)
Interior			21.0	2497.	1249.	50.
Interior film note	15000.	0.000067				
			19.6	2287.	1248.	55.
Concrete	17.3	0.058				
			18.6	2155.	631.	29.
Type 4 XPS	26.7	0.038				
			-10.9	268.	230.	86.
Air space	7200.	0.00014		3		
			-12.9	229.	229.	100.
	ΣR_v	0.0954		$\Sigma\Delta P_{\mathrm{w}}$	1020.	
1 42		Flow to:	$\Delta P/\Sigma R_{\rm v}$	10689.	ng/·s·m²	
			-12.9	229.	229.	100.
Brick	111.1	0.0090				
			-13.7	215.	167.	78.
Exterior film	75000.	0.000013				***************************************
Exterior			-14.0	209.	167.	80.
	ΣR_{v}	0.0090		$\Sigma\Delta P_{\mathrm{w}}$	62.	
		Flow away:	$\Delta P/\Sigma R_v$	6862.	ng/·s·m²	
		Net Accu	mulation:	3827.	ng/·s·m²	

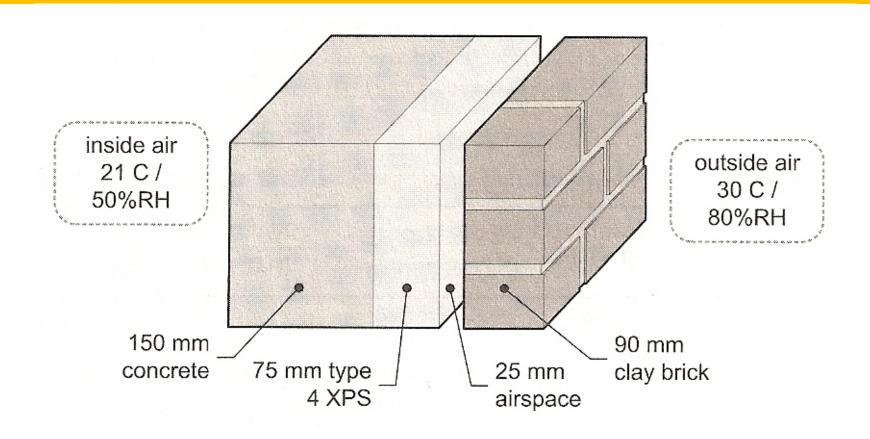


Table 6.10: Well-ventilated brick veneer

Layer Material	M _i (ng/Pa·s·m²)	R _{v,i} (Pa·s·m²/ ng)	T (°C)	P _{w,sat} (Pa)	P _w (Pa)	RH (%)
Interior			21.0	2497	1249	50
Interior film	15000.	0.000067				overnous montes established to the control of the c
00000000000000000000000000000000000000			19.6	2287	1248	55
Concrete	17.3	0.058				
		4	18.6	2155	601	28
Type 4 XPS	26.7	0.038				
			-10.9	268	180	67
Air space	7200.	0.00014				
			-12.9	229	179	78
Brick	1000.	0.0010				
			-13.7	215	167	78
Exterior film	75000.	0.000013				***************************************
Exterior			-14.0	209	167	80
	ΣR_v	0.096		$\Sigma\Delta P_{v}$	1082	

Component name	<i>R</i> -Value (hr-ft ² -°F/Btu)	Permeance (gr/hr-ft²-in.Hg)	<i>r</i> perm (hr-ft ² -in.Hg/gr)	Temperature (°F)	Saturation vapor pressure (in.Hg)	RH	Vapor pressure (in.Hg)
		and discussion consumers in a significant control of the control o		T₁ (=input)	$svp_i (=f(T_i))^*$	rh; (=input)	vp _i (=svp _i * rh _i)
	R ₁ (from	p ₁ (from	rp ₁ (= 1/p ₁)	T ₁		The control of the co	Vp ₁
empera hangan ng was manifold na anamonyo malinini na na kanjina kapi na lahanci ali ali ili ili ili ili ili i	reference)	reference)	1911 11917	$T_m = (T_1 R_2 + T_2 R_1)/(R_1 + R_2)$	svp (=f(T _m))*		$vp_m = (vp_1 rp_2 + vp_2 rp_1)/(rp_1+rp_2)$
	R ₂ (from reference)	p ₂ (from reference)	rp ₂ (= 1/p ₂)	T ₂			Vp ₂
				T _o (=input)	svpo (=f(To))*	rh _o (=input)	vpo (=svpo * rho)

^{*}See Appendix B for the function converting temperature F to saturation vapor pressure.

Figure 3-9

Profile method template. Formulas shown may be entered in a spreadsheet.

Source: Rose, Water in Buildings, Chapter 3

Moisture Control in Insulated Buildings

Mathematical Models

- Focus on transient models
 - transient physics
 - one or two dimensional
 - detailed material properties
 - hourly boundary conditions
 - surface conditions
 - building systems and subsystem effects

In Summary

Questions and Discussion

Next Class

- Moisture Control in Insulated Assemblies
 - Drying of assemblies
 - Rainwater deposition & control
 - Wall categorization

- Readings
 - HPE: Chapter 3.1